Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents a mathematical framework that characterizes a transversely isotropic piezo-visco-thermo-elastic medium within the context of the dual-phase lags heat transfer law (PVID) applied to an elastic medium (ES). Specifically, the study investigates the propagation of plane waves within the elastic medium and their interaction with the imperfect interface of the ES/PVID media. This interaction results in two waves reflecting back into the elastic medium and four waves propagating through the piezo-visco-thermo-elastic medium. The research explores the distribution of energy between the reflected and transmitted waves by analyzing amplitude ratios at the boundary interfaces, considering factors such as phase delays, viscosity effects, and wave frequency. The study illustrates the influence of boundary stiffness and viscosity parameters on these energy ratios through graphical representations. The study's findings are consistent with the principles of the energy balance law, and the research also delves into specific cases of interest. Overall, this investigation provides insights into wave behavior within complex media and offers potential applications across various fields.
EN
The propagation of plane waves in a rotating homogeneous, isotropic, thermoelastic solid with double porosity following Lord-Shulman’s theory of thermoelasticity has been investigated. It is assumed that the medium rotates about an axis normal to the surface with a uniform angular velocity. There may exist five coupled waves that evolved due to the longitudinal, transverse disturbance, voids of type-I and type-II, and temperature change in the medium. The secular equation for the model under consideration has been derived with the help of formal solutions and boundary conditions. The amplitude of displacements, temperature change and volume fraction fields for voids of type-I and type-II have also been computed analytically. Finally, numerical computations have been carried out for magnesium crystal material to understand the behavior of amplitude of phase velocity, penetration depth, specific loss, displacement components, temperature change, and volume fraction field due to type-I and type-II voids corresponding to the different rotation rates. Various graphs have been plotted to support the analytical findings. The study may be used in the development of rotation sensors, material design and thermal efficiency.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.