Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main aim of this study is to evaluate the usefulness of Institute of Geodesy at Graz University of Technology (ITSG) daily gravity field models in the determination of hydrological angular momentum (HAM) at nonseasonal time scales. We compared the equatorial components (χ1 and χ2) of HAM calculated with the ITSG daily gravity field models (ITSG-Gravity Recovery and Climate Experiment [ITSG-GRACE] 2016 and ITSG-GRACE 2018) with HAM and sea-level angular momentum (SLAM) from hydrological land surface discharge model (LSDM) and the hydrological signal in the polar motion excitation (known as geodetic residuals [GAO]). Data from ITSG have a daily temporal resolution and allow us to determine oscillations with higher frequencies than the more commonly used monthly data. We limited our study to the period between 2004 and 2011 because of the gaps in GRACE observations before and after this period. We evaluated HAM obtained from ITSG GRACE models in spectral and time domains and determined the amplitude spectra of the analyzed series in the spectral range from 2 to 120 days. Our analyses confirm the existence of a sub-monthly signal in the HAM series determined from ITSG daily data. We observed a similar signal in LSDM-based HAM, but with notably weaker amplitudes. We also observed common peaks around 14 days in the amplitude spectra for the GAO- and ITSG-based series, which may be related to the Earth’s tides. ITSG daily gravity field models can be useful to determine the equatorial components of HAM at nonseasonal time scales.
EN
Precise positioning and navigation on the Earth’s surface and in space require accurate earth orientation parameters (EOP) data and predictions. In the last few decades, EOP prediction has become a subject of increased attention within the international geodetic community, e.g., space agencies, satellite operators, researchers studying Earth rotation dynamics, and users of navigation systems. Due to this fact, many research centres from around the world have developed dedicated methods for the forecasting of EOP. An assessment of the various EOP prediction capabilities is currently being pursued in the frame of the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC), which began in September 2021 and will be continued until the end of the year 2022. The new campaign was prepared by the EOP PCC Office run by Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN) in Warsaw, Poland, in cooperation with GeoForschungsZentrum (GFZ) and under the auspices of the International Earth Rotation and Reference Systems Service (IERS). In this paper, we provide an overview of the 2nd EOP PCC five months after its start. We discuss the technical aspects and present statistics about the participants and valid prediction files received so far. Additionally, we present the results of preliminary comparisons of different reference solutions with respect to the official IERS 14 C04 EOP series. Root mean square values for different solutions for polar motion, length of day, and precession-nutation components show discrepancies at the level from 0.04 to 0.36 mas, from 0.01 to 0.10 ms, and from 0.01 to 0.18 mas, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.