Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the clinics, mammogram masses appear as asymmetric structures between the left and right breasts. In this paper, we design a bilateral image analysis method based on convolutional neural network which can detect and classify breast mass regions simultaneously. It mainly consists of three parts: a feature similarity based region matching technique, mass region of interest (ROI) selection step and a deep metric learning based classifier. Firstly, discriminative score maps are calculated relied on the deep features extracted from bilateral left and right mammograms respectively in global or local spatial image domain. The contralateral correspondences are determined by minimum discriminative scores. Secondly, to select the mass candidate ROIs and further remove false positive mass-tonormal pairs, we propose a dynamic histogram weighting mechanism with three new constrains imposed on the distribution of discriminative score histogram. In addition, a novel soft label based deep metric learning regularization is designed for mass ROI classifier to tackle the large variation of masses in shape, size, texture and breast density. We apply it to the open dataset Digital Database for Screening Mammography. Compared with other state-of-the-art approaches, the proposed scheme gives competitive results in classification and localization tasks for mammographic lesions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.