Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Simulation on human respiratory motion dynamics and platform construction
EN
Bronchoscopy has a crucial role in the current treatment of lung diseases, and it is typical of interventional medical instruments led by manual intervention. The scientific study of bronchoscopy is now of primary importance in eliminating problems associated with manual intervention by scientific means. However, for its intervention environment, the trachea is often treated statically, without considering the effect of tracheal deformation on bronchoscopic intervention during respiratory motion. Therefore its findings can deviate from practical application. Thus, studying kinetic problems in respiratory motion is of great importance. This paper developed a mathematical model of mechanical properties of respiratory motion to express respiratory force from the perspective of dynamics of respiratory motion. The dynamical model was solved using MATLAB. Then, a finite element model of respiratory motion was built using Mimics, and the results of respiratory force solution were used as the load of model for dynamics simulation in ABAQUS. Then, a human–computer interaction platform was designed in MATLAB APP Designer to realize parametric calculation and fitting of respiratory force, and a personalized human respiratory motion dynamics simulation was completed in conjunction with ABAQUS. Finally, experimental validation of the interactive platform was performed using pulmonary function test data from three patients. Validation analysis by respiration striving solution, kinetic simulation and experiment found that Dynamical model and simulation results can be better adapted to the individualized study of human respiratory motion dynamics.
EN
The flexural tests were conducted on 21 polyvinyl alcohol (PVA) fiber-reinforced recycled concrete slabs to investigate the influences of the reinforcement ratio, the PVA fiber content, the replacement ratio of recycled coarse aggregate (RCA) and the span-thickness ratio on the mechanical behaviors. The failure mode of the PVA fiber-reinforced recycled concrete slabs was the yielding of the longitudinal tensile reinforcement, slight crushing of concrete in the compression zone, and pulling out or breaking of PVA fiber at cracking position. The ultimate moment, cracking moment, moment corresponding to 0.2 mm-crack width and yield moment decreased as the replacement ratio of RCA or the span-thickness ratio increased while they increased as the reinforcement ratio or the PVA fiber content increased. Considering the impact of the PVA fiber content and the replacement ratio of RCA, the calculation formulas for conveniently predicting the flexural capacities of the PVA fiber-reinforced recycled concrete slabs were proposed. The formula prediction results were in good agreement with the test data.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.