Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Automatic Optical Inspection (AOI) systems that are extensively used in the industry of Electronics Manufacturing Services (EMS), performs the inspection of Surface Mount Devices (SMD). One of the main tasks of such an AOI system is to align a given PCB to the parameters of the corresponding PCB positioning system by a process called fiducial alignment. However, no detailed analysis has been carried out so far on the methodologies that can be used to have a very precise identification of PCB fiducial points. In our research, we have implemented an AOI system for the inspection of soldering defects of Through Hole Technology (THT) solder joints, which can be integrated to a desktop soldering robotic platform. Such platforms are used in environments where no specific lighting conditions can be provided within a surrounded atmosphere. Therefore, an AOI system that is capable of performing fiducial alignment of any given PCB under varying lighting condition is highly preferred. In this paper, we have presented a detailed analysis on feature extraction and template matching algorithms that can be used to implement a very precise fiducial verification process under normal lighting condition. Design/methodology/approach: A detailed analysis and performance evaluation have been carried out in this paper on prominent image comparison algorithms that are extensively used in the field of image processing. Findings: According to the analysis carried out in this paper, it could be observed that the combination of feature extraction and template matching algorithms gives the best performance in PCB fiducial verification process. Research limitations/implications: This paper only presents the implementation of the front end of our proposed AOI system. The implemented methodologies for the automatic identification of soldering defects will be discussed in separate research papers. Practical implications: The methodologies presented in this paper can be effectively used to implement a very precise and robust PCB fiducial verification process that can be efficiently integrated to a desktop soldering robotic system. Originality/value: This research proposes a very accurate fiducial verification process that can be used under varying lighting conditions on a wide range of different PCB fiducial points.
EN
Purpose: Automatic Optical Inspection (AOI) systems, used in electronics industry have been primarily developed to inspect soldering defects of Surface Mount Devices (SMD) on a Printed Circuit Board (PCB). However, no commercially available AOI system exists that can be integrated to a desktop soldering robotic system, which is capable of identifying soldering defects of Through Hole Technology (THT) solder joints along with the soldering process. In our research, we have implemented an AOI platform that is capable of performing automatic quality assurance of THT solder joints in a much efficient way. In this paper, we have presented a novel approach to identify soldering defects of THT solder joints, based on the location of THT component lead top. This paper presents the methodologies that can be used to precisely identify and localize THT component lead inside a solder joint. Design/methodology/approach: We have discussed the importance of lead top localization and presented a detailed description on the methodologies that can be used to precisely segment and localize THT lead top inside the solder joint. Findings: It could be observed that the precise localization of THT lead top makes the soldering quality assurance process more accurate. A combination of template matching algorithms and colour model transformation provide the most accurate outcome in localizing the component lead top inside solder joint, according to the analysis carried out in this paper. Research limitations/implications: When the component lead top is fully covered by the soldering, the implemented methodologies will not be able to identify the actual location of it. In such a case, if the segmented and detected lead top locations are different, a decision is made based on the direction in which the solder iron tip touches the solder pad. Practical implications: The methodologies presented in this paper can be effectively used to have a precise localization of component lead top inside the solder joint. The precise identification of component lead top leads to have a very precise quality assurance capability to the implemented AOI system. Originality/value: This research proposes a novel approach to identify soldering defects of THT solder joints in a much efficient way based on the component lead top. The value of this paper is quite high, since we have taken all the possibilities that may appear on a solder joint in a practical environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.