Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
When mining coal from the working face, the main roof withstands the overlying strata. The main roof’s first weighting and periodic weighting may cause accidents, such as crushing the working face hydraulic supports. A mechanical model of the main roof was constructed, and the contributing factors of first and periodic weights on the main roof were examined in order to prevent such accidents. The thickness of the main roof was found as the most contributory factor to the main roof’s stability. Therefore, a new directional roof crack (DRC) technique is proposed, which produces directional cracks in the main roof through directional blasting and makes part of it collapse in advance so as to reduce the thickness and relieve the first and periodic weighting. To verify the effectiveness of DRC, the mechanism of DRC was analysed. A mechanical model of the hydraulic support was constructed, and the DRC techniques were tested on-site. Field experiments with a complete set of monitoring schemes showed that, with DRC technology, the roof periodic weighting interval decreased by 35.36%, and the hydraulic support pressure decreased by 17.56%. The theoretical analysis was consistent with the measured results. Therefore, the DRC technology is feasible and effective to ensure mining safety at the working face.
EN
Because of the limited resolution of conventional time–frequency analysis algorithms, they are also limited to calculate attenuation gradients that describe oil and gas reservoirs. We propose an advanced method for calculating the attenuation gradient that combines the synchrosqueezing generalized S-transform of variational mode decomposition with the Teager–Kaiser energy operator. SSVGST takes advantage of the synchrosqueezing generalized S-transform to focus the longitudinal resolution of the time–frequency domain and variational mode decomposition for adaptive signal segmentation in the frequency domain. Thus, SSVGST can be used to improve the time–frequency resolution of seismic signals, and the Teager–Kaiser energy operator is used to enhance the extracted attenuation gradient and highlight oil and gas regions effectively. The time–frequency focusing ability of SSVGST was verified by using a synthetic signal and theoretical model. Experimental results with the model and field data showed that the combination of SSVGST with the Teager–Kaiser energy operator suppressed the fuzzy energy caused by the low resolution of conventional time–frequency analysis algorithms and could locate reservoirs accurately and effectively.
3
Content available remote High-resolution reflectivity inversion based on joint sparse representation
EN
High-resolution reflectivity inversion is termed as a fundamental yet essential step for the prediction of thin-bedded hydrocarbon reservoirs. However, algorithms suffer from two key issues: (1) seismic inversion is an ill-posed problem that has multiple solutions, and the results of trace-by-trace seismic inversion are quite poor in lateral continuity, and (2) algorithm stability is likely to be decreased owing to the noise and distortion associated with the acquisition and processing flows. In the current article, we formulate a new joint sparse representation through the combination with L2,1- norm misfit function, which possesses superior noise robustness, in particular in the presence of outliers. On the basis of the L2,1- norm regularization, this specific approach enforces a common sparsity profile, together with consistently lowering the multiplicity of solution. Subsequent to that, the resultant algorithm is applied to the multi-trace seismic inversion. Besides, the wedge model trial and practical applications suggest that the proposed inversion algorithm is stable, in addition to having good noise robustness and lateral continuity; moreover, the vertical resolution of λ/8 is realized under the noise and outliers interference. The logging data calibration illustrates that the proposed methodology is accurate and credible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.