Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study is a contribution to the knowledge of hydrochemical properties of the groundwater in Fesdis Plain, Algeria, using multivariate statistical techniques including principal component analysis (PCA) and cluster analysis. 28 samples were taken during February and July 2015 (14 samples for each month). The principal component analysis (PCA) applied to the data sets has resulted in four significant factors which explain 75.19%, of the total variance. PCA method has enabled to highlight two big phenomena in acquisition of the mineralization of waters. The main phenomenon of production of ions in water is the contact water-rock. The second phenomenon reflects the signatures of the anthropogenic activities. The hierarchical cluster analysis (CA) in R mode grouped the 10 variables into four clusters and in Q mode, 14 sampling points are grouped into three clusters of similar water quality characteristics.
PL
Przedstawione w niniejszej pracy badania stanowią przyczynek do poznania właściwości hydrochemicznych wód gruntowych na równinie Fesdis w Algierii uzyskany z wykorzystaniem wieloczynnikowej analizy statystycznej, w tym analizy głównych składowych (PCA) i analizy skupień. Dwadzieścia osiem próbek wody pobrano w lutym i w lipcu 2015 r. (po 14 próbek w każdym miesiącu). Na podstawie analizy składowych głównych zastosowanej do zbioru danych stwierdzono cztery istotne czynniki, które objaśniały 75,19% całkowitej wariancji. Metoda PCA umożliwiła wyodrębnienie dwóch zjawisk odpowiedzialnych za mineralizację wody. Głównym czynnikiem tworzenia jonów w wodzie jest kontakt wody ze skałą (czas retencji mineralizacji). Drugi czynnik jest odzwierciedleniem aktywności człowieka. W hierarchicznej analizie skupień (CA) zgrupowano 10 zmiennych w cztery skupienia w trybie R, a w trybie Q zgrupowano 14 stanowisk pobierania próbek w trzy skupienia o podobnych cechach jakości wody.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.