Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Fluorine-containing wastewater from the Yuncheng Sewage Treatment Plant in Heze City, Shan-dong Province was treated by coagulation and precipitation with poly aluminum sulfate, and CaO chemical precipitation-activated carbon adsorption, with a view to reducing fluoride ions concentration in the wastewater to below the discharge standard. The results showed that the optimum conditions for the coagulation-sedimentation test of poly aluminum sulfate were as follows: the dosage of poly aluminum sulfate 0.3 g/dm3, initial pH value 4.0, the removal rate of fluoride ion in the fluorine-containing wastewater reached 98.46%, and the concentration of fluoride ion was 0.462 mg/ dm3, which reached the discharge standard (1.5 mg/ dm3); The optimum conditions for the CaO chemical precipitation, and lanthanum loaded activated carbon adsorption method were as follows: the amount of CaO 20 g/ dm3, initial pH of the chemical precipitation test 8.0, the dosage of lanthanum loaded activated carbon 10 g/ dm3, and the initial pH of the adsorption test 6.0. At this time, the removal rate of fluoride ions in the fluorine-containing wastewater reached 95.81%, and the concentration of fluoride ions was 1.26 mg/ dm3, which also met the discharge standard.
EN
The effects of oxygen-containing functional groups on the structure and dynamic properties of water molecules near a lignite surface were investigated through molecular dynamics (MD) simulations. Because of its complex composition and structure, a graphite surface containing hydroxyl, carboxyl, and carbonyl groups was used to represent the lignite surface model. According to X-ray photoelectron spectroscopic (XPS) results, the composing proportion of hydroxyl, carbonyl and carboxyl is 21:13:6. The density profiles of oxygen and hydrogen atoms indicate that the brown coal surface characteristics influence the structural and dynamic properties of water molecules. The interfacial water is much more ordered than bulk water. The results of the radial distribution functions, mean square displacements, and local self-diffusion coefficients for the water molecules in the vicinity of three oxygen-containing functional groups confirmed that carboxyl groups are the preferential adsorption sites.
EN
In this work, low rank coal was used for the removal of nonylphenol ethoxylate with fifteen ethylene oxide groups (NPEO15) from aqueous solutions at different contact times, temperatures, and initial adsorbent concentrations. The adsorption isotherms showed good fit with the Langmuir equation. Maximum adsorption capacities calculated at 308, 318, and 328 K were 23.64, 29.41, and 35.71 mg g–1, respectively. The changes in the free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated in order to predict the nature of adsorption. The results of the thermodynamic analysis indicated that a spontaneous process took place, driven synergistically by both enthalpy and entropy. The adsorption kinetics of NPEO15 were consistent with a pseudo-second order reaction model. XPS results showed that the oxygen functional groups on the low rank coal surface were significantly covered by NPEO15. Furthermore, while the content of C–C/C–H functional groups increased significantly, that of C–O functional groups decreased after absorption. These results clearly indicate that low rank coal is more hydrophobic and displays better floatability.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.