Gastric slow waves (SWs) are commonly used for the quantitative assessment of gastric functional disorders. Compared with surface electrogastrography, using of magnetic signals to record SWs can achieve higher-quality signal recording. In this study, we discovered that optically pumped magnetometers (OPM) based on the spin exchange relaxation-free method have comparable weak magnetic detection capabilities to superconducting quantum interference devices but without liquid helium cooling. However, owing to the inevitable interference of low-frequency environmental drift, the characteristic features of SW are obscured, greatly increasing the difficulty in detecting gastric magnetic signals. Therefore, in this study, we constructed an OPM Magnetogastrography (OPM-MGG). We proposed an adaptive filtering architecture combined with environmental drift suppression and a non-stationary signal decomposition method for extracting SW signals. Through controlled human experiments, the results demonstrated that our testing system successfully extracted SW signals in the frequency range of 2-4 cycles per minute. The extracted SW signals exhibited consistent power and time-frequency characteristics with the reported results. This study validates the feasibility of (1) using the OPM-MGG system for capturing SW signals and (2) the proposed processing strategies for identifying ultralow-frequency SW signals. In conclusion, the OPM-MGG system and the signal extraction strategies developed in this study have the potential to provide a wearable technology for bioweak magnetic field measurements, offering new opportunities for both research and clinical applications.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.