Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 142

Liczba wyników na stronie
first rewind previous Strona / 8 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 8 next fast forward last
EN
Due to the characteristics of color vegetation canopy images which have multiple details and Gaussion noise interference, the adaptive mean filtering (AMF) algorithm is used to perform the denoising experiments on noised images in RGB and YUV color space. Based on the single color characteristics of color vegetation canopy images, a simplified AMF algorithm is proposed in this paper to shorten the overall running time of the denoising algorithm by simplifying the adaptive denoising processing of the component V, which contains less image details. Experimental results show that this method can effectively reduce the running time of the algorithm while maintaining a good denoising effect.
EN
An experimental method of evaluating the fatigue behavior of alloys in different particle environments was designed, and the effects of four kinds of particles (i.e., graphite, CaO, Al2O3, and MnO2) on the crack propagating behavior of 7N01-T6 behaviour alloys were investigated. The results show that the particles deposited on the crack surface exert significant influence on the fatigue crack propagation behavior thereof. This influence strongly depends on the elastic moduli of the particles (Ep). As Ep is less than that of aluminium alloy (EAl), the particle accelerates the fatigue-crack-growth rate (FCGR) in the alloys due to the lubrication of the particles on the mating fracture surfaces. When the difference between Ep and EAl is small, the particle effect on the FCGRs of the alloys is small due to the counteraction between the decrease in friction and the promotion on the crack closure of mating fracture surfaces. When Ep is greater than EAl, the particles slow down the FCGRs of the alloys on account of significant crack closure effect. As Ep is much greater than EAl, the particles increase the FCGRs because of the increasing stress concentration at the crack tip.
EN
To study the force and deformation characteristics of subsea mudmat-pile hybrid foundations under different combined loads, a project at a water depth of 200 m in the South China Sea was studied. A numerical model of a subsea mudmatpile hybrid foundation is developed using the numerical simulation software FLAC3D. The settlement of the seabed soil, the bending moments of the mudmat, and the displacements and bending moments along the pile shaft under different load combinations, including vertical load and horizontal load, vertical load and bending moment, and horizontal load and bending moment load, are analyzed. The results indicate that settlement of the seabed soil is reduced by the presence of piles. The settlement of the mudmat is reduced by the presence of piles. Different degrees of inclination occur along the pile shaft. The angle of inclination of pile No. 1 is greater than that of pile No. 2. The dip directions of piles No. 1 and No. 2 are identical under the vertical load and bending moment and are opposite to those under the other combined loads. The piles that are located at the junctions between the mudmat and the tops of the piles are easily destroyed.
EN
The paper reports the design and tests of the planar autopilot navigation system in the three-degree-of-freedom (3-DOF) plane (surge, sway and yaw) for a ship. The aim of the tests was to check the improved maneuverability of the ship in open waters using the improved nonlinear control algorithm, developed based on the sliding mode control theory for the ship-trajectory tracking problem of under-actuated ships with static constraints, actuator saturation, and parametric uncertainties. With the integration of the simple increment feedback control law, the dynamic control strategy was developed to fulfill the under-actuated tracking and stabilization objectives. In addition, the LOS (line of sight) guidance system was applied to control the motion path, whereas the sliding mode controller was used to emulate the rudder angle and propeller rotational speed control. Firstly, simulation tests were performed to verify the validity of the basic model and the tracking control algorithm. Subsequently, full scale maneuverability tests were done with a novel container ship, equipped with trajectory tracking control and sliding mode controller algorithm, to check the dynamic stability performance of the ship. The results of the theoretical and numerical simulation on a training ship verify the invariability and excellent robustness of the proposed controller, which: effectively eliminates system chattering, solves the problem of lateral drift of the ship, and maintains the following of the trajectory while simultaneously achieving global stability and robustness.
EN
The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.
EN
In this work, new experimental value for water content in sour natural gas were reported. In addition, to predict the water content in sour natural gas, a modified cubic plus association equation of state (CPA-EoS) was also proposed. In this model, a new energy parameter a was proposed to make an accurate description of saturated liquid density. Additionally, a temperature dependent binary interaction parameter kij for six binary systems was also obtained. Lastly, a comparison between the prediction results of the modified CPA-EoS and the experimental data was presented, and the results showed that the modifi ed CPA-EoS could predict the water content in sour natural gas with high accuracy, which has an AAD of 3.6722% with experimental data in literatures and an AAD of 1.946% for experimental data reported in this work.
EN
In this study, the Input-Output Structural Decomposition Analysis (I-O SDA) method is adopted to analyze the structural change in China's textile industry during 1997-2012 and to measure the contribution rate of the growth factors (consumption, investment, inventory, exports and imports) affecting change in its gross output. Then the key factors and main driving forces promoting textile industry development are figured out. The results show that China's textile industry has experienced great change both in scale and structure. Among the growth factors, the contribution rate of exports is the largest, followed by investment, consumption, imports and inventory. The textile industry still relies heavily on exports, investment and consumption, while the contribution rate of imports is relatively small. In addition, technological change makes a positive contribution with technological innovation. Among the industrial sectors, the cotton& chemical fibre textile industry holds dominance, with the textile manufactured goods industry exhibiting tremendous development, the growth of the knitted textile industry fluctuating, and the wool textile industry and hemp& silk textile industry progressing slowly. Finally relevant policy suggestions are proposed to promote the balanced and coordinated development of China's textile industry.
PL
W celu analizy strukturalnej zmian chińskiego przemysłu tekstylnego w latach 1997-2012 oraz pomiaru czynników wzrostu tj. konsumpcji, inwestycji, rezerw, eksportu i importu wpływających na zmianę wielkości produkcji globalnej zastosowano metodę analizy strukturalnej rozkładów międzygałęziowych (IO SDA). Następnie ustalono kluczowe czynniki i główne siły wspierające rozwój przemysłu włókienniczego. Wyniki pokazują, że przemysł włókienniczy w Chinach przeszedł wielką zmianę zarówno pod względem skali, jak i struktury. Wśród czynników wzrostu największy udział ma eksport, a następnie inwestycje, konsumpcja, import i rezerwy. Przemysł włókienniczy w dalszym ciągu w dużym stopniu opiera się na eksporcie, inwestycjach i konsumpcji, podczas gdy udział importu jest stosunkowo niewielki. Ponadto zmiana technologiczna ma pozytywny wpływ na innowacje. Spośród sektorów przemysłowych dominuje przemysł włókien bawełnianych i chemicznych, a przemysł tekstylny stale się rozwija, rozwój dziewiarstwa podlega fluktuacjom, a rozwój przemysłu włókien wełnianych, konopnych i jedwabnych postępuje powoli . Autorzy sformułowali pewne sugestie mające na celu promowanie zrównoważonego i skoordynowanego rozwoju chińskiego przemysłu tekstylnego.
EN
Many factors were needed to be considered to prepare pre-oxidised fibre felts with excellent heat insulation performance, and different production processes showed differences in the heat insulation performance of pre-oxidised fibre felts. In order to probe into the influence of the production process on the heat insulation performance of materials, a large number of experiments were needed to be carried out. For needle-punched nonwoven pre-oxidised fibre felts, web features, needle characteristics and the needle process will all affect the structure of pre-oxidised fibre felts, thus bringing a major influence on the heat insulation performance of pre-oxidised fibre felts. In this paper, the influence of the needle number on the heat insulation performance of pre-oxidised fibre felts was mainly studied. Results showed that an increase in the needle number will cause a decrease in the thickness and gram weight of pre-oxidised fibre felts, and a weakening trend in the heat insulation performance of pre-oxidiaed fibre felts with an increasing needle number at room temperature and at 100-200 °C was shown. Moreover when the needle number was 1 and 2, the pre-oxidised fibre needled felts had good heat insulation performance, and for pre-oxidized fibre felts at different needle numbers with increasing temperature, the temperature difference in a steady state increased linearly.
PL
Aby przygotować filce z włóknami preoksydowanymi o doskonałymi właściwościami izolacyjnymi, należy wziąć pod uwagę wiele czynników, a różne procesy produkcyjne wykazały różnice w wydajności izolacji cieplnej filców włóknistych. Aby zbadać wpływ procesu produkcyjnego na parametry izolacji termicznej materiałów, konieczne było przeprowadzenie wielu eksperymentów. W pracy badano głównie wpływ liczby igieł na izolacyjność cieplną wstępnie utlenionych filców włóknistych. Wyniki pokazały, że zwiększenie liczby igieł spowodowało zmniejszenie grubości i gramatury filców włóknistych oraz osłabienie tendencji w zakresie izolacji cieplnej filców z włóknami preoksydowanymi wraz ze wzrastającą liczbą igieł w temperaturze pokojowej i w 100-200 °C. Ponadto, gdy liczba igieł wynosiła 1 i 2, pre-utlenione włókniny igłowane miały dobrą izolację cieplną, a dla wstępnie utlenionych filców włóknistych przy różnych numerach igieł ze wzrastającą temperaturą, różnica temperatur w stanie ustalonym wzrastała liniowo.
EN
WO3 modified TiO2 nanotube array (WO3/TNAs) photoelectrodes were fabricated via electrochemical deposition on TNAs/Ti photoelectrodes. The morphology and structure of WO3/TNAs photoelectrodes were investigated by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The effects of deposition potential, deposition duration, NaWO4 concentration, and calcination temperature on the morphology and the photocatalytic activity were investigated. The results showed that suitable amounts of WO3 promoted the photocatalytic activity of TNAs photoelectrodes for the degradation of dimethyl phthalate (DMP). The optimal conditions for the fabrication of WO3/TNAs photoelectrodes were as follows: deposition voltage 3.0 V, 10 min deposition duration, 0.01 mol/dm3 Na2WO4 concentration, 1.5 cm electrode gap, and 550 °C annealing temperature. The degradation rate of DMP reached 77% after 60 min of illumination by WO3/TNAs photoelectrode. Additionally, WO3/TNA photoelectrodes possessed superb stability for maintaining a high DMP degradation efficiency at more than 75% after 10 times of successive use with 60 min irradiation for each cycle. The enhancement of photocatalytic performance by the efficient combination of WO3 with TNAs would provide a theoretical basis for the practical application of WO3/TNA photoelectrodes in water treatment.
EN
Nitrocellulose (NC) is a common, commercially available, cellulosederived material and has been functionalized and widely applied in microfluidic technology, immunoassays and biochemical analyses. However, existing testing parameters always fail to completely and accurately reflect its inherent quality. In this study, we have designed and assembled a novel automatic polarizing microscope test system (PMTS) to scientifically test the nitrogen content and uniformity of nitration of NC based on the chromogenic principle of a polarization microscope. The advantages of this system are: (i) the PMTS requires less sample (only a few micrograms); (ii) the test period is shorter and the results can be obtained within 20 min; (iii) the method belongs to the nondestructive testing group, and the NC sample is not burned, dissolved, or damaged; and (iv) this method has increased accuracy, and the deviation of the nitrogen content is less than ±0.05%. The properties of various NC samples prepared by different nitricsulfuric acid systems from raw materials with diverse maturities were determined via PMTS. Five NC samples with different nitrogen contents (10.9%, 11.5%, 11.8%, 12.6% and 13.5%) were tested, and the variance of the corresponding uniformity of nitration of these samples were 3.17, 1.61, 1.15, 1.76, and 2.83. The uniformity of nitration initially decreased and then increased with increasing nitrogen content, and the best uniformity of nitration appeared at a nitrogen content of 12%. We also found that fibre maturity has a positive effect on the uniformity of nitration. This testing device and method, with its cost-effectiveness and field-portability, can significantly improve the accuracy of nitration content and uniformity, and has an important value in practical applications.
EN
The introduction of anions and cations into energetic materials can significantly improve their physicochemical and energetic properties. The K, Zn, Ba, Cu and Pb salts of 1,1,2,2-tetranitraminoethane (TNAE) were synthesized using TNAE as the starting material, and were characterized by IR spectroscopy, NMR spectroscopy and elemental analysis. All of the energetic salts exhibited relatively high thermal stabilities (decomposition temperatures ranging from 195.1 °C to 279.3 °C) and high densities (ranging from 2.1 g·cm–3 to 3.7 g·cm–3). It was demonstrated that the introduction of metal ions conveys better thermal stability than covalent TNAE itself. More importantly, the Zn, Ba and Cu salts exhibited good thermal stability, high density, low sensitivity, and therefore have the potential to be a new class of insensitive, highly energetic explosives for practical applications.
EN
Isothermal hot compression experiments were carried out using the Gleeble-1500D thermal mechanical simulator. The flow stress of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys was studied at hot deformation temperature of 550°C, 650°C, 750°C, 850°C, 900°C and the strain rate of 0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1, 10 s-1. Hot deformation activation energy and constitutive equations for two kinds of alloys with and without yttrium addition were obtained by correlating the flow stress, strain rate and deformation temperature. The reasons for the change of hot deformation activation energy of the two alloys were analyzed. Dynamic recrystallization microstructure evolution for the two kinds of alloys during hot compression deformation was analyzed by optical and transmission electron microscopy. Cu-1%Zr and Cu-1%Zr-0.15%Y alloys exhibit similar behavior of hot compression deformation. Typical dynamic recovery occurs during the 550-750°C deformation temperature, while dynamic recrystallization (DRX) occurs during the 850-900°C deformation temperature. High Zr content and the addition of Y significantly improved Cu-1%Zr alloy hot deformation activation energy. Compared with hot deformation activation energy of pure copper, hot deformation activation energy of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys is increased by 54% and 81%, respectively. Compared with hot deformation activation energy of the Cu-1%Zr alloy, it increased by 18% with the addition of Y. The addition of yttrium refines grain, advances the dynamic recrystallization critical strain point and improves dynamic recrystallization.
EN
Based on the mould temperature measured by thermocouples during slab continuous casting, a difference of temperature thermograph is developed to detect slab cracks. In order to detect abnormal temperature region caused by longitudinal crack, the suspicious regions are extracted and divided by virtue of computer image processing algorithms, such as threshold segmentation, connected region judgement and boundary tracing. The abnormal regions are then determined and labeled with the eight connected component labeling algorithm. The boundary of abnormal region is also extracted to depict characteristics of longitudinal crack. Based on above researches, longitudinal crack with abnormal temperature region can be detected and is different from other abnormalities. Four samples of temperature drop are picked up to compare with longitudinal crack on the abnormal region formation, length, width, shape, et al. The results show that the abnormal region caused by longitudinal crack has a linear and vertical shape. The height of abnormal region is more than the width obviously. The ratio of height to width is usually larger than that of other temperature drop regions. This method provides a visual and easy way to detect longitudinal crack and other abnormities. Meanwhile it has a positive meaning to the intelligent and visual mould monitoring system of continuous casting.
EN
The temperature evolution and the mechanical characteristics of pseudoelasticity TiNi alloys have been studied experimentally at different strain rates. During SHPB testing, the temperature changes were in situ measured by an infrared system recording infrared radiation emitted from the surface of the specimen. It was found that the temperature evolution and the mechanical behavior has a remarkable strain rate effect. With the strain rate increasing, both phase transition subsequent stress and modulus of loading the phase transition stage were higher, exhibiting significant strain and the strain rate hardening characteristic. They were accompanied by the temperature increasing, which suggest that the stress increments result from the temperature change, independently of the strain rate. Calculation analysis results show that latent heat and the dissipated energy in the form of the hysteresis loops, are mainly the sources of the temperature change.
EN
In a PV-dominant DC microgrid, the traditional energy distribution method based on the droop control method has problems such as output voltage drop, insufficient power distribution accuracy, etc. Meanwhile, different battery energy storage units usually have different parameters when the system is running. Therefore, this paper proposes an improved control method that introduces a reference current correction factor, and a weighted calculation method for load power distribution based on the parameters of battery energy storage units is proposed to achieve weighted allocation of load power. In addition, considering the variation of bus voltage at the time of load mutation, voltage secondary control is added to realize dynamic adjustment of DC bus voltage fluctuation. The proposed method can achieve balance and stable operation of energy storage units. The simulation results verified the effectiveness and stability of the proposed control strategy.
EN
Two kinds of filler metal, Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo, were used to vacuum braze Ti2AlNb and TC4 alloys. The interfacial microstructures and the room temperature (RT) and elevated temperature shear strengths of the brazed joints were analysed. Moreover, the effects of the brazing parameters and filler metal Mo content on the microstructure and corresponding mechanical properties of the brazed joints were investigated. The results showed that the typical brazed joint mainly contained α-Ti, (Ti,Zr)2(Cu,Ni), β-Ti, and Ti-rich phases. The addition of the Mo particles was beneficial to inhibit the eutectoid transformation of β-Ti during cooling, resulting in the formation of residual β-Ti instead of α-Ti. In addition, Mo particles can also make the microstructure more homogeneous. The highest RT shear strength of the joints brazed with the Ti–Zr–Cu–Ni filler metal was 351 MPa when the joint was brazed at 980 °C for 10 min. Under the same brazing parameters, the RT shear strength reached 437 MPa with the addition of 8 wt.% Mo particles to the filler metal. Moreover, the shear strengths of the joints brazed with the Mo-free and 8 wt.% Mo filler metals tested at 600 °C were 272 MPa and 393 MPa, respectively.
EN
Randomness in construction material properties (e.g. Young's modulus) can be simulated by stationary random processes or random fields. To check the stationarity of commonly used techniques, three random process generation methods were considered: Xn(t), Yn(t), and Zn(t). Methods Xn(t) and Yn(t) are based on a truncation of the spectral representation method with the first n terms. Xn(t) has random amplitudes while Yn(t) has random harmonics phases. Method Zn(t) is based on the Karhunen–Loève expansion with the first n terms as well. The effects of the truncation technique on the mean-square error, covariance function, and scale of fluctuation were examined in this study; these three methods were shown to have biased estimations of variance with finite n. Modified forms for those methods were proposed to ensure the truncated processes were still zero-mean, unit-variance, and had a controllable scale of fluctuation; in particular, the modified form of Karhunen–Loève expansion was shown to be stationary in variance. As a result, the modified forms for those three methods are advantageous in simulating statistically homogenous material properties. The effectiveness of the modified forms was demonstrated by a numerical example.
EN
Side scan sonar measurement platform, affected by underwater environment and its own motion precision, inevitably has posture and motion disturbance, which greatly affects accuracy of geomorphic image formation. It is difficult to sensitively and accurately capture these underwater disturbances by relying on auxiliary navigation devices. In this paper, we propose a method to invert motion and posture information of the measurement platform by using the matching relation between the strip images. The inversion algorithm is the key link in the image mosaic frame of side scan sonar, and the acquired motion posture information can effectively improve seabed topography and plotting accuracy and stability. In this paper, we first analyze influence of platform motion and posture on side scan sonar mapping, and establish the correlation model between motion, posture information and strip image matching information. Then, based on the model, a reverse neural network is established. Based on input, output of neural network, design of and test data set, a motion posture inversion mechanism based on strip image matching information is established. Accuracy and validity of the algorithm are verified by the experimental results.
EN
To solve the dynamic response problems of magnetic coupling in the horizontal axis wave energy device, this has researched the dynamic characteristicsof magnetic coupling. The fitting formula about torque and angle of the magnetic coupling is obtained through experiments. The mathematical models of the magnetic coupling torque transmission are established. The steady state error of the magnetic coupling and the transfer function of the output angle are obtained. The analytical solution of the step response of the output angle in time domain is derived. The influence of the torsional rigidity, the damping coefficient and the driven rotor’s rotational inertia on dynamic characteristics of the magnetic coupling isanalyzed. According to the analysis results, the design rules of magnetic coupling are proposed.
EN
The ship’s pilot can obtain the ship auxiliary information through the navigation system, when berthing system can display the parameters such as traverse speed and distance of the ship. But most of the system data show that there are insufficient precision. Taking the CORS system to obtain the location information, data Calculation of Berthing System based on Polar Coordinate Algorithm, this paper puts forward a solution to the “dead point” of the berthing and aiding system, which has a certain reference value for the design of the ship berthing assistance system.
first rewind previous Strona / 8 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.