Dynamic compressive behaviour of basalt–polypropylene fibre-reinforced concrete (BPFRC) was experimentally investigated using a 75-mm-diameter split-Hopkinson pressure bar. The results showed that the addition of basalt fibre (BF) and polypropylene fibre (PF) is effective at improving the impact-resistance behaviour of concrete. The dynamic compressive strength, critical strain, and energy absorption capacity of BPFRC increased with increasing strain rate. At strain rates of 20–140 s−1, the addition of BF and PF significantly increased the dynamic compressive strength, critical strain, and energy absorption capacity of concrete. The dynamic increase factor of BPFRC increased linearly with the decimal logarithm of strain rate. The hybrid addition of BF and PF significantly improved the strain rate effect of the dynamic compressive strength. The strengthening and toughening mechanisms of BF and PF are discussed in detail. The proposed dynamic damage constitutive model can be used to accurately describe the dynamic stress–strain relationship of BPFRC.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A novel multi-objective model for hybrid thermal-wind-PV power system is proposed in this paper to solve the problem of energy saving and emission reduction/economic dispatch which is optimized by proposed Karush-Kuhn-Tucker (KKT) and quantum genetic algorithm (QGA). Through detailed analyses, mathematical functions of power operation, energy consumption and emission and relevant constraint conditions are proposed, and then for the first time, the multi-objective optimization model of energy saving and emission reduction/economic dispatch including thermal power, wind power and PV power is established. KKT is used to transform multi-objective model into single-objective one, QGA is used to optimize the single-objective model, then a novel KKT and QGA is proposed. Several simulations including wind power, PV power and thermal power are proposed, which shows positive effects of wind power and PV power in energy saving and emission reduction. The experimental study shows that the proposed algorithm is more accurate and with less computational time than commonly used optimization methods. The actual implementation results prove that the model and algorithm are effective and practical to reduce power cost, energy consumption and emission.
PL
W artykule przedstawiono model hybrydowego systemu Odnawianych Źródeł Energii (termiczne, wiatrowe, fotowoltaika). W modelu wzięto pod uwagę optymalizację użytkowania (oszczędzanie energii oraz ekonomika wytwarzania). Wykorzystano metodę Karush-Kuhn-Tucker oraz QGA. Na podstawie analiz, opracowano funkcje matematyczne dotyczących przesyłu, emisji i zużycia energii oraz ograniczeń z nimi związanych. Wyniki badań symulacyjnych i eksperymentalnych potwierdzają skuteczność działania zaproponowanej optymalizacji.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.