Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of the study was to produce heterophasic graphene nanoplatelets based formulation designed for ink-jet printing and biomedical applications. The compositions should meet two conditions: should be cytocompatible and have the rheological properties that allow to apply it with ink-jet printing technique. In view of the above conditions, the selection of suspensions components, such as binder, solvent and surfactants was performed. In the first stage of the research the homogeneity of the dispersion of nanoplatelets and their sedimentation behaviour in diverse solutions were tested. Subsequently, the cytotoxicity of each ink on human mesenchymal stem cells was examined using the Alamar Blue Test. At the same time the rheology of the resulting suspensions was tested. As a result of these tests the best ink composition was elaborated: water, polyethylene glycol, graphene nanoplatelets and the surfactant from DuPont company.
EN
Polylactide (PLLA) containing β-TCP is biodegradable composite and an attractive biomaterial for bone tissue engineering, however, hydrophobicity of PLLA based composites is major limitation for their use as scaffolds for cell culture. In our study lecithin was used to improve hydrophilicity and cytocompatibility of PLLA/ β-TCP composite. Thin films of PLLA, PLLA/ β-TCP and PLLA/β-TCP/lecithin were manufactured by solvent-casting technique. Comparative analysis of all types of films was performed. Addition of β-TCP did not change hydrophilicity of PLLA. The hydrophilicity of PLLA/β-TCP/lecithin increased in comparison to PLLA and PLLA/β-TCP. Degradation of PLLA/β-TCP composite surpassed the degradation of PLLA while addition of lecithin diminished the degradation of composite. The cytocompatibility of composites were studied in 7 day long in vitro assay. Human bone derived cells were seeded on all tested surfaces. Cell viability was estimated by Live/Dead fluorescent staining and Alamar Blue test. Surprisingly, although lecithin addition improved hydrophilicity of the PLLA-based composite, adhesion and proliferation of human bone derived cells were markedly hampered on PLLA/β-TCP/lecithin in comparison to PLLA and PLLA/β-TCP. Despite positive effect we found of lecithin addition on hydrophilicity and stability of PLLA-based composite, its effect on cell attachment and proliferation is negative. Hence, incorporation of lecithin did not improve properties of PLLA/β-TCP/lecithin composite intended for bone tissue regeneration.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.