The categorical compositional distributional model of natural language provides a conceptually motivated procedure to compute the meaning of a sentence, given its grammatical structure and the meanings of its words. This approach has outperformed other models in mainstream empirical language processing tasks, but lacks an effective model of lexical entailment. We address this shortcoming by exploiting the freedom in our abstract categorical framework to change our choice of semantic model. This allows us to describe hyponymy as a graded order on meanings, using models of partial information used in quantum computation. Quantum logic embeds in this graded order.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we present the parallel QBF Solver PaQuBE. This new solver leverages the additional computational power that can be exploited from modern computer architectures, from pervasive multi-core boxes to clusters and grids, to solve more relevant instances faster than previous generation solvers. Furthermore, PaQuBE’s progressive MPI based parallel framework is the first to support advanced knowledge sharing in which solution cubes as well as conflict clauses can be exchanged between solvers. Knowledge sharing plays a critical role in the performance of PaQuBE. However, due to the overhead associated with sending and receiving MPI messages, and the restricted communication/network bandwidth available between solvers, it is essential to optimize not only what information is shared, but the way in which it is shared. In this context, we compare multiple conflict clause and solution cube sharing strategies, and finally show that an adaptive method provides the best overall results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.