Purpose: The aim of the study was to investigate the possibility of using engineering waste materials in the form of brick dust and volcanic tuff as corrosion inhibitors. The corrosion tests were carried out on the aluminium alloys against aggressive corrosive environments with acidic pH containing chlorine compounds. Design/methodology/approach: The specimens for corrosion tests were cut from a sheet made of aluminium alloy EN AW-6060. In the first step the aluminium specimens was covered with a coating of clear alkyd varnish without any additives. In the next step used additives in the form of brick dust and vulcanic tuff were used. The tests were carried out using a RADWAG AS 310.R2 laboratory analytical balance to obtain the weight loss results for the specimens tested. Findings: Brick dust used in concentrations of 10% to 40% by weight cannot be considered as a material that allows achieving satisfactory results. This is due to the absorption of the corrosive medium by the brick dust. On the other hand, the volcanic tuff addition of 30% by weight creates conditions that slow down the corrosion process in the long term. Research limitations/implications: Consideration should be given to preparing all types of structural components for corrosion protection by blunting sharp edges for better adhesion of corrosion protection coatings. Therefore, further work should focus on obtaining a coating with an adequate adhesion as well as checking the action of volcanic tuff as an inhibitor in other corrosive media. Practical implications: The introduction of appropriately prepared volcanic tuff additives into protective coatings is expected to increase the effectiveness of the protection of the metal substrate against the corrosion process. It is therefore important to manage and monitor the factors that affect the coating and occur during the painting process. Originality/value: In tests confirmed the good properties of volcanic tuff, which slows down corrosion processes and preserves the uniform corrosion of aluminium. The result obtained has the lowest mass loss values of all the specimens prepared in the experiment, which proves the validity of using the volcanic tuff additive.
The stress concentration observed in the vicinity of cut-outs and holes in structural elements significantly influences the fatigue endurance of machines subjected to cyclic loads. Numerous studies have been made so far to improve this situation and increase the structure lifetime. Several design recommendations have also been worked out to avoid the problem of premature failure. The proposed article illustrates the influence of the composite overlays applied around the cut-outs made in flat steel constructional elements subjected to axial tension. The detailed study concerns the reinforcement made from the FRP (fibre reinforcement polymer) composite applied around the notches. Two types of composite materials were used, namely: TVR 380 M12/R-glass (glass fibres embedded in epoxy resin matrix) and AS4D/9310 (carbon fibres embedded in epoxy resin matrix). In the first step, the detailed numerical studies (finite element analysis) were performed for the steel samples (with no overlays added) with cut-outs made in the form of circle, square and triangle hole (the last two with rounded corners). The results of these studies were compared with the existing analytical solutions with respect to the stress concentration factors (SCF) estimation. The relatively good conformity was observed when using dense meshes of finite elements placed around the void vicinity. In the next step, the composite overlays were applied around cut-outs and their influence on the stress concentration was investigated. The influence of the fibre orientation, numbers of layers, sizes of the composite overlay used were considered. It was proved that the application of composite overlays evidently decreases the stress concentration around the notches.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.