The safety and quality of each cosmetic product is tested before it is introduced to the market. There are highly regulated requirements that producers should comply with. However, as the cosmetic products are highly complexed mixture of different ingredients, detailed characterization of their composition remains still a challenge. Currently, due to the development of modern technologies, a wide range of analytical methods are available. Scientists are increasingly adapting highly sophisticated and advanced techniques to precisely identify and quantify the components of cosmetic products. The aim of this article is to present the analytical methods applied to examine cosmetics taking into account their advantages and limitations. The progress made in recent years in the design of novel instruments leading to their greater efficiency, selectivity and sensitivity was also considered. The techniques that are commonly used in the quality control laboratories of cosmetic companies were presented. Cosmetics analysis is not only limited to the characterization of product itself. Today, in vivo tests are very essential to determine the efficacy of formulations directly on the skin surface. Therefore, in this article modern devices dedicated to theses analyses were described in detail.
The synthetic zeolite-sodalite obtained by the hydrothermal conversion of fly ash with aqueous sodium hydroxide was used in the experiments. Its adsorption properties in relation to lithium ions were examined. The effects of: solution pH, presence of polymeric substance – poly(acrylic acid) and order of individual adsorbates addition were determined. To specify the binding mechanism of lithium ions on the sodalite surface, besides adsorption experiments, the measurements leading to the solid surface charge density and zeta potential determination, were performed. As a result, the structure of mixed adsorption layer composed of polymer+metal complexes was characterized. The presented study concerns two important issues: management of environmentally harmful wastes such as coal combustion products as well as searching for new sources of lithium and effective methods of its acquisition.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.