Accurate identification of coal and gangue is essential for clean and efficient use of coal. Existing target detection algorithms are ineffective in detecting small-target and overlapping gangue, and contain complex network structure and large parameter volume, which cannot meet the demand of real-time detection of edge devices. To address the above problems, a lightweight detection and identification approach of coal gangue based on improved YOLOv5s is proposed. The depth-separable convolutions are used to replace ordinary convolutions, and the C3 (Concentrated-Comprehensive Convolution Block) Ghost module is constructed to replace all C3 modules in the YOLOv5s to reduce model computation and parameters. The CA (Coordinate Attention) attention mechanism is introduced to strengthen the attention to the target to be detected, suppress irrelevant background interference, and improve the detection accuracy of the model. The Focal- EIOU (Focal and Efficient Intersection Over Union) loss function was introduced to replace the original CIOU. Extensive experiments substantiated the proposed approach can effectively and quickly detect the small-target and overlapping coal gangue accurately, and the mAP (mean Average Presicion) reaches 97.7%. Compared with the original YOLOv5s, the proposed approach reduces the number of parameters and the amount of computation by 48.5% and 43%, respectively, under the premise of maintaining the same detection accuracy.
In order to explore the impact of coal and gangue particle size changes on recognition accuracy and to improve the single particle size of coal and gangue identification accuracy of sorting equipment, this study established a database of different particle sizes of coal and gangue through image gray and texture feature extraction, using a relief feature selection algorithm to compare different particle size of coal and gangue optimal features of the combination, and to identify the points and particle size of coal and gangue. The results show that the optimal features and number of coal and gangue are different with different particle sizes. Based on visible-light coal and gangue separation technology, the change of coal and gangue particle size cause fluctuations in the recognition accuracy, and the fluctuation of recognition accuracy will gradually decrease with increases in the number of features. In the process of particle size classification, if the training model has a single particle size range, the recognition accuracy of each particle size range is low, with the highest recognition accuracy being 98% and the average recognition rate being only 97.2%. The method proposed in this paper can effectively improve the recognition accuracy of each particle size range. The maximum recognition accuracy is 100%, the maximum increase is 4%, and the average recognition accuracy is 99.2%. Therefore, this method has a high practical application value for the separation of coal and gangue with single particle size.
PL
W celu zbadania wpływu zmian wielkości cząstek węgla i skały płonnej na dokładność rozpoznawania oraz poprawienia dokładności identyfikacji pojedynczych cząstek węgla i skały płonnej przez urządzenia sortujące, w ramach tej pracy utworzono bazę danych różnych rozmiarów cząstek węgla i skały płonnej za pomocą obrazów szarych i ekstrakcję cech tekstury przy użyciu algorytmu wyboru cech reliefowych w celu porównania różnych rozmiarów cząstek węgla i skały płonnej przy optymalnych cechach kombinacji oraz identyfikacji punktów i wielkości cząstek węgla i skały płonnej. Wyniki pokazują, że optymalne liczby cech węgla i skały płonnej są różne dla różnych rozmiarów cząstek. W oparciu o technologię separacji węgla i skały płonnej w świetle widzialnym, zmiana wielkości cząstek węgla i skały płonnej powoduje fluktuacje dokładności rozpoznawania, a te z kolei będą stopniowo zmniejszać się wraz ze wzrostem liczby cech. W procesie klasyfikacji wielkości cząstek, jeśli model uczący ma jeden zakres wielkości cząstek, dokładność rozpoznawania każdego zakresu wielkości cząstek jest niska, przy czym najwyższa dokładność rozpoznawania wynosi 98%, a średni wskaźnik rozpoznawania wynosi tylko 97,2%. Metoda zaproponowana w tym artykule może skutecznie poprawić dokładność rozpoznawania każdego zakresu wielkości cząstek. Maksymalna dokładność rozpoznawania wynosi 100%, maksymalny wzrost to 4%, a średnia dokładność rozpoznawania to 99,2%. Dlatego ta metoda ma dużą praktyczną wartość użytkową do oddzielania węgla i skały płonnej według rozmiaru pojedynczej cząstki.
Accurate segmentation of dual-energy X-ray transmission (DE-XRT) coal and gangue image regions are a prerequisite for feature extraction, identification, localization, and separation. A watershed algorithm based on multi-grayscale threshold segmentation (MGTS) is proposed to mark the foreground for the adhesion and overlap of coal and gangue. The grayscale images of foreground objects are segmented using multiple grayscale thresholds, and the number of connected domains is recorded each time. As the gray threshold value decreases, overlapping and adhering objects are gradually separated. The binary image segmented at the grayscale threshold with the most significant number of connected domains is used as a marker region. This marker region is used as the seed point of the watershed algorithm to find the dividing line. The experimental results show that the segmentation accuracy is 91.35%, and the segmentation accuracy of overlapping adhesions of 2, 3, and 4 targets is higher than 90%.
In order to improve the utilization rate of coal resources, it is necessary to classify coal and gangue, but the classification of coal is particularly important. Nevertheless, the current coal and gangue sorting technology mainly focus on the identification of coal and gangue, and no in-depth research has been carried out on the identification of coal species. Accordingly, in order to preliminary screen coal types, this paper proposed a method to predict the coal metamorphic degree while identifying coal and gangue based on Energy Dispersive X-Ray Diffraction (EDXRD) principle with 1/3 coking coal, gas coal, and gangue from Huainan mine, China as the research object. Differences in the phase composition of 1/3 coking coal, gas coal, and gangue were analyzed by combining the EDXRD patterns with the Angle Dispersive X-Ray Diffraction (ADXRD) patterns. The calculation method for characterizing the metamorphism degree of coal by EDXRD patterns was investigated, and then a PSO-SVM model for the classification of coal and gangue and the prediction of coal metamorphism degree was developed. Based on the results, it is shown that by embedding the calculation method of coal metamorphism degree into the coal and gangue identification model, the PSO-SVM model can identify coal and gangue and also output the metamorphism degree of coal, which in turn achieves the purpose of preliminary screening of coal types. As such, the method provides a new way of thinking and theoretical reference for coal and gangue identification.
PL
W celu poprawy stopnia wykorzystania zasobów węgla konieczna jest klasyfikacja węgla i skały płonnej, ale to klasyfikacja węgla jest szczególnie ważna. Niemniej jednak obecna technologia separacji węgla i skały płonnej koncentruje się głównie na identyfikacji węgla i skały płonnej, ale nie przeprowadzono dogłębnych badań dotyczących identyfikacji gatunków węgla. W związku z tym, w celu wstępnego przesiewu rodzajów węgla, w niniejszym artykule zaproponowano metodę przewidywania stopnia metamorfizmu węgla przy identyfikacji węgla i skały płonnej w oparciu o zasadę dyfrakcji rentgenowskiej z dyspersją energii (EDXRD) z 1/3 węglem koksującym, węglem gazowym i skałą płonną z kopalni Huainan w Chinach jako obiektem badawczym. Różnice w składzie fazowym 1/3 węgla koksowego, węgla gazowego i skały płonnej analizowano przez połączenie wzorców EDXRD z wzorcami dyfrakcji rentgenowskiej z dyspersją kątową (ADXRD). Zbadano metodę obliczeniową charakteryzującą stopień metamorfizmu węgla za pomocą wzorców EDXRD, a następnie opracowano model PSO-SVM do klasyfikacji węgla i skały płonnej oraz przewidywania stopnia metamorfizmu węgla. Na podstawie uzyskanych wyników wykazano, że poprzez wbudowanie metody obliczania stopnia metamorfizmu węgla w model identyfikacji węgla i skały płonnej, model PSO-SVM może identyfikować węgiel i skałę płonną, a także wyprowadzać stopień metamorfizmu węgla, co z kolei spełnia cel wstępnego przesiewania rodzajów węgla. Jako taka, metoda ta zapewnia nowy sposób myślenia i teoretyczne odniesienie do identyfikacji węgla i skał płonnych.
The rapid and accurate detection and identification of coal gangue is one of the premises and key technologies of the intelligent separation of coal gangue, which is of considerable importance for the separation of coal gangue. Focusing on the problems in the current deep learning algorithms for the detection and recognition of coal gangue, such as large model memory and slow detection speed, a rapid detection method for lightweight coal gangue is proposed. YOLOv3 is taken as the basic structure and improved. The MobileNetv2 lightweight feature extraction network is selected to replace Darknet53 as the main network of the detection algorithm to improve the detection speed. Spatial pyramid pooling (SPP) is added after the backbone network to convert different feature maps into fixed feature maps in order to improve the positioning accuracy and detection capability of the algorithm, thereby obtaining the lightweight network MS-YOLOV3. The experimental equipment was set up and multi-condition coal and gangue datasets were constructed. The model was trained and the identification and positioning results of the model were tested under different sizes, illumination intensities and various working conditions, and compared with other algorithms. Experimental results show that the proposed algorithm can detect the coal gangue quickly and accurately, with an mAP of 99.08%, a speed of 139 fps and a memory occupation of only 9.2 M. In addition, the algorithm can effectively detect mutually stacking coal and gangue of different quantities and sizes under different lights with high confidence and with a certain degree of environmental robustness and practicability. Compared with the YOLOv3, the performance of the proposed algorithm is significantly improved. Under the premise that the accuracy is unchanged, the FPS increases by 127.9% and the memory decreases by 96.2%. Therefore, the MS-YOLOv3 algorithm has the advantages of small memory, high accuracy and fast speed, which can provide online technical support for the detection and identification of coal and gangue.
PL
Szybkie i dokładne wykrywanie oraz identyfikacja skały płonnej jest jedną z przesłanek i kluczowych technologii inteligentnej separacji skały płonnej. Koncentrując się na problemach związanych z obecnymi algorytmami wykrywania i rozpoznawania skały płonnej z głębokim uczeniem, takimi jak duża pamięć modelu i niska prędkość wykrywania, zaproponowano metodę szybkiego wykrywania lekkiej skały płonnej. YOLOv3 jest traktowany jako struktura podstawowa i ulepszony. Lekka sieć ekstrakcji funkcji Mobilenetv2 została wybrana w celu zastąpienia Darknet53 jako głównej sieci algorytmu wykrywania w celu poprawy szybkości wykrywania. Spatial Pyramid Pooling (SPP) jest dodawany po sieci szkieletowej w celu konwersji różnych map obiektów na mapy stałych funkcji, aby poprawić dokładność pozycjonowania i zdolność wykrywania algorytmu, uzyskując w ten sposób lekką sieć MS-YOLOV3. Ustawiono sprzęt eksperymentalny i skonstruowano wielowarunkowe zbiory danych dotyczące węgla i skały płonnej. Model został przeszkolony, a wyniki identyfikacji i pozycjonowania modelu zostały przetestowane przy różnych rozmiarach, natężeniu oświetlenia i różnych warunkach pracy oraz porównane z innymi algorytmami. Wyniki eksperymentu pokazują, że zaproponowany algorytm jest w stanie szybko i dokładnie wykryć skałę węglową, z mAP na poziomie 99,08%, szybkością 139 fps i zajęciem pamięci zaledwie 9,2 MB. Ponadto może skutecznie wykrywać różne światła, różne rozmiary, wzajemne układanie w stosy oraz wielokrotną ilość węgla i skały płonnej, z dużą pewnością i pewną odpornością środowiskową i wykonalnością. W porównaniu z YOLOv3 wydajność proponowanego algorytmu jest znacznie lepsza. Przy założeniu, że dokładność pozostaje w zasadzie niezmieniona, FPS wzrasta o 127,9%, a pamięć spada o 96,2%. Dlatego algorytm MS-YOLOv3 ma zalety małej pamięci, wysokiej dokładności i dużej szybkości, co może zapewnić wsparcie techniczne dla wykrywania i identyfikacji węgla i skały płonnej online.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Chassis frame of electric vehicle contains several thin-walled tube structures that can provide an important component for installing the power unit and supporting the body in white of vehicle. Thus, design a chassis frame is a multi-objective optimization and multi-parameter problem. To address it, the contributions of design variables to the performance indicators of chassis frame are studied first, and obtained the optimal design variables. The effects of the design parameters on the objective responses are analyzed based on a polynomial response surface model. Moreover, to determine optimal solution between the conflicting performance indicators of the chassis frame, an integrated approach based on lightweight and crashworthiness is presented to analysis the performance and determine the Pareto fronts. In addition, the optimal solution is acquired from the Pareto fronts by the grey relational analysis and game theory. Experiments corresponding to the numerical analysis are performed to verify the feasibility of the optimized strategy and the performance of the optimized chassis frame structure. Results show that according to the optimal parameters of chassis frame, the lightweight performance can be improved significantly, while the linear performance and crashworthiness performance of chassis frame are ensured.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.