Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We identified 209 species of algae and cyanobacteria at 4 sites in the Kabul River. Green algae, diatoms, and charophytes dominated in the river, which reflects regional features of agricultural activity. Species richness and algal abundance increased down the river. The Water Quality Index characterizes the quality of water down the river as medium to bad. The index of saprobity S reflects Class III water quality. The Water Ecosystem Sustainability Index (WESI) shows contamination with nutrients. According to the River Pollution Index (RPI), waters in the river have low alkalinity and low salinity, and are contaminated with nutrients. Pearson coefficients showed that water temperature plays a major role in the total species richness distribution (0.93*) and in the green algae distribution (0.89*), while cyanobacteria were stimulated also by water salinity (0.91*). Stepwise regression analysis indicated water temperature as the major regional factor that determines riverine algal diversity. Surface plots and Canonical Correspondence Analysis (CCA) showed that salinity, nitrates, temperature, and Biochemical Oxygen Demand (BOD) can be defined as major factors affecting algal diversity. Dendrites mark the upper site of the Warsak Dam as the source of the community species diversity. Bioindication methods can give relevant and stable results of water quality and self-purification assessment that can be employed to monitor the regional water quality.
2
Content available remote Freshwater green algal biofouling of boats in the Kabul River, Pakistan
EN
Freshwater green algal biofouling of boats refers to the accrual of freshwater green algae on boats immersed in water. The current research focused on the morphological characteristics of the isolates, species ecology, and the physicochemical properties of the water at the sampling sites. Two localities, Haji Zai and Sardaryab, were sampled at the Kabul River in the district of Charsadda, Pakistan. Freshwater green algae causing biofouling were isolated from the boats. A total of three genera: Cladophora, Rhizoclonium, and Spirogyra with fifteen species belonging to the families Cladophoraceae and Zygnemataceae were observed. Statistical analysis reveals significant stimulation of green algal species in the boats’ fouled communities by increases in water temperature, conductivity, and Total Suspended Solids (TSS). The algal growth at the Haji Zai site is suppressed by TDS in autumn (Pearson −0.56) and is stimulated by water temperature in spring (Pearson 0.44). At the Sardaryab site, algae were stimulated in spring by pH of water (Pearson 0.61), and suppressed by Total Dissolved Solids (TDS) in autumn (Pearson −0.43). Statistical analysis indicates that pH, conductivity, and temperature are the main factors determining the algal biofouling in the Kabul River.
3
EN
The ecological state of the Kiev Reservoir affected by intensive contamination as a result of the accident at the Chernobyl Nuclear Power Station in 1986 was assessed in terms of the species-indicators of epiphytic algae occurring in the fouling of higher aquatic plants. It has been found that inhabitants of slowly flowing and moderately warm waters, alkaliphiles, indifferent organisms in relation to water salinity, nitrogen-autotrophic taxa tolerating elevated concentrations of organically bound nitrogen, β-mesosaprobionts and eurysaprobes (in relation to organic contamination) and eutraphentic organisms (indicators of the trophic state) prevailed in phytoepiphyton of the Kiev Reservoir. As a result of comparison of the original results with literature data obtained prior to the accident, it has been found that over a span of about 30 years (from the 1970s–1980s to 2010–2013), the taxonomic structure of phytoepiphyton remained almost unchanged. At the same time, the intensity of eutrophication, alkalization, and thermofication processes increased.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.