Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We synthesized a new phenylacetic hydrazide derivative (TAPH) by acylation and amination to prepare modified poly(L-lactide) (PLLA) materials. The non-isothermal melt- and cold-crystallization, melting process, optical and mechanical properties of modified PLLA were studied with the objective of correlating TAPH to PLLA crystallization and other performances. Non-isothermal melt crystallization showed that TAPH as a heterogeneous additive was able to promote crystallization and accelerate the crystallization rate of PLLA. Unfortunately, an increase in the cooling rate during cooling led to a decrease in crystallization ability. Non-isothermal cold-crystallization results disclosed that PLLA/TAPH’s coldcrystallization behavior depended on the heating rate; and upon a given heating rate, with an increase in TAPH loading, a shift toward the low-temperature side of the cold-crystallization peak further confirmed the nucleation effect of TAPH. The melting processes of PLLA/TAPH effectively depended on TAPH, the heating rate, and previous crystallization behaviors including non-isothermal crystallization and isothermal crystallization. Additionally, the double-melting peaks that appeared during the melt were thought to be due to melting-recrystallization. In terms of the optical property, the influence of TAPH on PLLA’s transparency was extremely negative as 2 wt% TAPH caused PLLA’s transparency to be zero. A comparative study on mechanical properties showed that TAPH could enhance PLLA’s tensile modulus and tensile strength, but elongation at break of any PLLA/TAPH was lower than that of pure PLLA.
EN
The Changning-Menglian Belt in western Yunnan, China has long been considered a major Tethyan suture in SE Asia, based mainly on fragmented Paleozoic ophiolites, slices of Devonian-Triassic radiolarian cherts and possible seamount limestones of Permo-Carboniferous age (Fig. 1). However, some students also argued for a setting of passive continental margin for this belt and a cryptic suture further east representing the vanished Tethyan Ocean (Ridd, 2015). To evaluate this hypothesis, we have been studying late Paleozoic strata and fusulinids in this belt for years. We recently collected late Carboniferous to Middle Permian fusulinids from various sections in this belt, including ascendingly Triticites assemblage, Sphaeroschwagerina sphaerica assemblage, Eoparafusulina assemblage, Chalaroschwagerina solita assemblage and Neoschwagerina assemblage. Further comparison reveals that the fusulinid taxonomy in this belt still differs from that in S China. For instance, the Early Permian fusulinids in this belt generally lack Pseudoschwagerina, a typical Cathaysian element. Moreover, quantitative analysis (Rarefaction) confirms that the generic diversity in this belt remains lower than in S China. These results supports that a substantial portion of the Permo-Carboniferous limestones in this belt originated from seamounts located far from the northern Gondwana margin, meanwhile slightly south of the equatorial region, also considering the couplet of carbonates and underlying basalts (OIB type). Furthermore, petrographic and geochemical analyses of the Carboniferous siliciclastic Nanduan Formation demonstrate a mature continental provenance and two peaks of detrital zircon ages (ca. 950 Ma and ca. 550 Ma) (Zheng et al., 2019). Notably, these two peaks are also shared by metasedimentary rocks (e.g., the Ximeng and Lancang Groups) widespread in this belt as well as peri-Gondwana blocks. These data suggest that the Paleozoic siliciclastics covering this belt’s eastern and western parts were derived from the Gondwana margin. Therefore, significant siliciclastic inputs from the Gondwana margin over much of this belt contradict the implied vast Paleozoic ocean in this belt. In contrast, the siliciclastic Nanpihe Group (Devonian-early Carboniferous) in the central part demonstrates a detritus source from continental arcs and clusters of detrital zircon ages of ca. 435 Ma and ca. 950 Ma, which correlates well to Silurian magmatism in the Simao and S China blocks. In conclusion, we propose that the Changning-Menglian Belt was part of the passive continental margin on the eastern flank of the Baoshan-Shan Block during the late Paleozoic, while and tectonostratigraphic slices of seamount limestones, Nanpihe Formation or even ophiolites are allochthonous and were displaced to their present position during the Late Triassic closure of the Tethys.
EN
The influence of phenylacetic acid hydrazide (NAPAH) derivative content, melt temperature (170−200°C) and cooling rate (1−20°C/min) on poly(L-lactide) (PLLA) nucleation were investigated. Increasing the content of NAPAH (0.5−3.0 wt.%) had a positive effect on PLLA crystallization, while an increase in the cooling rate and heating temperature had a negative effect. In the case of isothermal crystallization carried out for a long time (180 min), the melting process depended only on the crystal lization temperature. NAPAH also influenced the cold crystallization temperature, reduced thermal stability and improved PLLA processability (MFR).
PL
Zbadano wpływ zawartości pochodnej hydrazydu kwasu fenylooctowego (NAPAH), temperatury stopu (170−200°C) i szybkości chłodzenia (1–20°C/min) na nukleację poli(L-laktydu) (PLLA). Zwiększenie zawartości NAPAH (0,5–3,0% mas.) miało pozytywny wpływ na krystalizację PLLA, natomiast wzrost szybkości chłodzenia i temperatury ogrzewania negatywny. W przypadku krystalizacji izotermicznej prowadzonej przez długi czas (180 min), proces topnienia zależał tylko od temperatury krystalizacji. NAPAH wpływał również na temperaturę zimnej krystalizacji, zmniejszał stabilność ter miczną i poprawiał właściwości przetwórcze PLLA (MFR).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.