Two optimization aspects of the meshless method (MLM) based on nonsingular radial basis functions (RBFs) are considered in an acoustic indoor problem. The former is based on the minimization of the mean value of the relative error of the solution in the domain. The letter is based on the minimization of the relative error of the solution at the selected points in the domain. In both cases the optimization leads to the finding relations between physical parameters and the approximate solution parameters. The room acoustic field with uniform, impedance walls is considered. As results, the most effective Hardy’s Radial Basis Function (H-RBF) is pointed out and the numer of elements in the series solution as a function of frequency is indicated. Next, for H-RBF and fixed n, distributions of appropriate acoustic fields in the domain are compared. It is shown that both aspects of optimization improve the description of the acoustic field in the domain in a strictly defined sense.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.