Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Chronic liver disease and cirrhosis, that can lead to liver failure, are major public health issues, with liver transplantation as the only effective treatment. However, the limited availability of transplantable organs has spurred research into alternative therapies, including bioartificial livers. To date, liver hybrid support devices, using porcine hepatocytes or hepatoma-derived cell lines, have failed to demonstrate efficacy in clinical trials. Here, for the first time, we report the construction of a model of biologically active function block of bioartificial liver based on a hollow fiber bioreactor populated with genetically modified hepatic cells. For comprehensive comparison the culturing of hepatic cells was carried out in both static and dynamic conditions in a medium that flowed through porous polysulfone capillaries. The most crucial parameters, such as cell viability, glucose consumption, albumin secretion and urea production, were analyzed in static conditions while glucose usage and albumin production were compared in dynamic cell cultures. This model has the potential to improve the development of bioartificial liver devices and contribute to the treatment of patients with impaired liver function.
EN
Currently, one of the most serious public health issues is the increasing number of cases of chronic liver disease and cirrhosis both of which can lead to liver failure. The only effective method of treatment for this life-threatening condition remains liver transplantation. Unfortunately, the chronic shortage of transplantable organs seriously limits its accessibility to patients. Thus, tremendous research has been done to develop methods capable of replacing liver transplantation by artificial means or to create techniques to partially or fully replace liver function in patients with impaired livers, until liver regeneration or transplantation. This review article is focused on research results that utilize living cells in order to establish bridging therapies in cases of liver failure. This includes both experimental and clinically tested techniques, such as hepatocyte transplantation and usage of the hybrid bioartificial liver devices. The article also discusses research which presents the long-term culture of hepatocytes in conditions that preserve their differentiated state, which is important for such applications as drug development and toxicity testing. Last but not least, the article describes the groundbreaking efforts toward building sophisticated scaffolds for hepatocyte culture that mimic their natural environment, which are based on decellularized tissues and on three-dimensional bioprinting.
EN
The bioartificial liver, a hybrid device aimed at improving the survival of patients with fulminant liver failure, requires a cell source to replicate human liver function. However, liver support systems that utilize porcine or human hepatoma-derived cells felt short of expectations in clinical trials. Here we present engineered C3A cells, with a restored function of the urea cycle, which can be used in an efficacious bioartificial liver. The genetic modification was performed using a lentiviral-mediated gene transfer which led to effective integra- tion of the transgenes, coding for arginase I and ornithine transcarbamylase, into the target cell genomes. The engineered cells are more resistant to the oxidative/nitrosative stress induced by the presence of high concentrations of ammonia cations and produce more urea than their unmodified counterparts. Interestingly, the genetically modified cells secrete more albumin than control C3A cells and the synthesis of the protein is induced by increasing concentrations of ammonia. Although the physiological capabilities of the new cell line need to be further examined, at this stage of our study we may conclude that the genetically modified cells are able to convert ammonia to urea more effectively than regular C3A cells.
EN
In this paper, electrochemical properties of the as-formed and thermally treated titanium dioxide (TiO2) nanotubes with diameter in the range of 20–100 nm and height in the range of 100–1000 nm were presented. In addition, the effects of annealing temperature (450–550 °C) on the electrochemical characteristics of these structures, as well as the influence of diameter and height of TiO2 nanotubes on these properties were examined. The results were referred to a compact TiO2 layer (100 nm thick). Methods: The electrochemical test included open circuit potential, impedance spectroscopy and cyclic voltammetry measurements. The scanning electron microscope with energy dispersive spectroscopy analyser, x-ray photoelectron spectroscopy, and x-ray diffraction analysers were used for surface morphology characterisation as well as elemental, phase and chemical composition of TiO2 layers. Results: It was found that nanotubes with the diameter of 50 and 75 nm (height of 1000 nm) annealed at 550 °C exhibit the lowest impedance and phase angle values. However, the voltammetric detection of potassium ferricyanide indicated that the closest to 1 Ipc /Ipa ratio were shown by nanotubes with a diameter of 50 and 75 nm annealed at 450 °C. Conclusions: On the basis of performed analysis, it can be stated that the TiO2 layer with nanotubes of 50 nm in diameter and of 1000 nm in height, annealed in 450 °C may be indicated as the ones having the most favourable sensing and biosensing properties.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.