The SOx emissions of the marine engine are regulated by international maritime conventions. In this paper, the effect of various parameters, including SO2 partial pressure, liquid to gas ratio (L/G), alkalinity and pH, was investigated by seawater scrubbing experiment in a turbulent contact absorber (TCA) and a spray absorber (SA) on a laboratory scale. The experimental data showed that the desulfurization efficiency of TCA was mainly dependent on the value of L/G and irrelevant to the changing way of L/G; the appropriate L/G of TCA was 2.3 dm3/m3 and pH of effluent water was 2.4–2.8 at the L/G of 1.1–2.8 dm3/m3. Comparatively, the desulfurization efficiency of increasing liquid flow rate was better than that of decreasing gas flow rate in the SA experiment. At the gas velocity of 1.58 m/s and L/G of 2.3 dm3/m3, the desulfurization efficiencies and drop pressures of TCA and SA were 75.9% and 42.4%, 690 and 260 Pa, respectively. The results indicate that TCA chosen as an absorber is likely to be a competitive desulfurization technique for controlling marine diesel emission.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.