W artykule przedstawiono koncepcję niskoemisyjnych obiegów gazowo-parowych rozwijanych w kierunku czystych technologii gazowych. Proponowane rozwiązania zakładają wykorzystanie pokładów gazu łupkowego znajdującego się na Pomorzu. Ze względu na ograniczoną wydajność otworu i skończony czas eksploatacji staje się zasadna utylizacja gazu w miejscu wydobycia w małych, przenośnych, kompaktowych elektrowniach z wykorzystaniem oksyspalania w turbinie gazowo-parowej. Niniejsze rozwiązanie jest szansą na wykorzystanie zasobów gazu łupkowego w sposób zapewniający czystość środowiska naturalnego i dywersyfikację źródeł energii. Ponadto niniejsze układy mogą stanowić ważny element zapewniający prawidłową pracę inteligentnej sieci elektrycznej.
EN
This article describes the concept of low-emission gas-steam cycles developed towards gas clean technologies. The proposed solutions involve the use of shale gas deposits located in Pomerania. Due to the limited capacity of the hole and a finite life becomes justified utilization of gas production site in a small, portable, compact plants with oxy-combustion in gas-steam turbine. This solution is an opportunity for the use of shale gas resources to ensure clean environment and diversification of energy sources. In addition, these systems can be an important element in ensuring the proper functioning of the smart electricity grid.
In this paper has been presented a methodology of validation a novel mathematical model dedicated to evaluation and prediction of material degradation and damage of steam turbine elements such as blades, valves, and pipes due to three mechanisms: stress-corrosion, high-temperature creep and low-cyclic fatigue. The validation concept is based on an experimental setup manufactured in the Laboratory of Faculty of Mechanical and Power Engineering, Wrocław UT. The concept of validation by comparison of measured and numerically predicted eigen-frequencies and eigen-modes of different turbine elements within laboratory conditions are presented, and mathematical models of three damage mechanisms have been described. Using the mentioned method of experimental validation based on comparisons of eigen-frequencies, we could calibrate yet unknown coefficients in the turbine damage model. A practical aim is an implementation of a novel life-time module for the BOTT (block of thermal stresses restriction) system. In particular the stress-corrosion factor will be added for the advanced numerical control system, creating in such way a universal, flexible and a complete tool for monitoring degrees of degradation, corrosion and damage of critical points in a steam turbine.
PL
Niniejszy artykuł jest kolejnym z cyklu, którego celem jest opracowanie numerycznego narzędzia badawczego opartego na CSD (Computational Solid Dynamics). Zadaniem jego byłaby weryfikacja stanu wytrzymałościowego i dynamicznego trudnodostępnych dla pomiarów urządzeń w turbinie takich jak: rurociągi pary świeżej, zawory, wirniki czy łopatki. Narzędzie obserwowałoby rozwijające się mechanizmy: korozji, pełzania wysokotemperaturowego i niskocyklicznego zmęczenia. Ostateczną walidacje modeli numerycznych z eksperymentem zaplanowano wykonać w Laboratorium Wydziału Mechaniczno-Energetycznego Politechniki Wrocławskiej. W tej części cyklu artykułów pokazano m.in. walidację modelu numerycznego z pomiarami drgań, jakie wykonano na stanowisku badawczym oraz w skrócie opisano poszczególne moduły narzędzia. Po implementacji wszystkich modeli do systemu nadzorującego pracę turbozespołu o nazwie BOTT (Blok Ograniczeń Termicznych), powstanie zupełnie nowy, elastyczny i kompletny system monitorujący stopień degradowania się elementów turbozespołu o nazwie ANCS (Advance Numerical Control Systems) działający w sposób on-line.
In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.
Almost entire fleet of steam turbines in Poland was designed between 1950_1980 with the use of the so-called zero-dimensional (0D) calculation tools. For several years, design and modernization of the turbines occur in assistance with the state-of-the-art methods that describe working fluid flow field based on three-dimensional (3D) models and computational fluid dynamics (CFD) codes. This cooperation between 0D and 3D codes requires exchange of overall, integral information such as: power, efficiency, heat and mass fluxes. In consequence the question arises regarding the cohesion of definitions, and particularly regarding the correctness of the definition for internal efficiency of the turbine's stage and the turbine as a whole. In the present paper we formulate basic definitions reason of efficiency that are naturally adapted to the numerical 0D and 3D models. We show that the main reason of differences between the definitions in 0D and 3D is the definition of the theoretical work of the stage lt. In the classical 0D models, mostly employed is the isentropic approach, and hence the isentropic efficiency occurs. Meanwhile, in the increasingly common 3D approach (most likely by CFD), we use more physically correct pathway by subtracting energy loss from the available energy, that leads to the polytropic definition of efficiency. We show an example of computing the efficiency and the 3D losses, denoted with additional subscript CFD, we also discuss benefits of this definition in comparison with the isentropic classical definition in 0D.
The subject of this work is the numerical simulation of a turbulent diffusion jet flame fueled with a mixture of CH4, H2, and N2. Simulations have been investigated with various two-equation turbulence models to improve prediction of jet flow fields. The calculations are validated against existing experimental data obtained by Raman and laser Doppler velocimetry. In particular, a comparison of three two-equation turbulence models and their influence on combustion proces is presented, namely the Pope corrected k-ε model, standard k-ε model and the realizable k-ε. For combustion modeling the eddy dissipation concept (EDC) model with a 25-step reaction is considered. The numerical results for mean velocity components, temperature, and major chemical species are presented and compared with the experimental data. The goal of the work is to investigate the capabilities of the used turbulence models in proper predicting of the round jet spreading in a nonpremixed jet flame. Simple geometry allows for reliable flow simulations. Calculations were performed using FLUENT 2D and 3D solver. The Pope correction has been applied via the user defined function. The advantages and disadvantages of the models are discussed in detail in the meantime during presentation of the results.
The results of numerical simulations to predict the performance of different steam models have been presented. All of the considered models of steam condensation have been validated on the base of benchmark experiment employing expansion in nozzle and next on the low pressure part of the steam turbine stage. For numerical analysis three models have been finally used - the ideal steam model without condensation, equilibrium steam model and a nonequilibrium steam model. It was confirmed that only the inclusion of the nonequilibrium effects in the computations can lead to a proper prediction of the condensation phenomena in the test nozzle. However, the basic characteristics of the low-pressure turbine can be succesfully estimated using a simple ideal steam or the equilibrium condensation model.
This paper analyzes the possibility of resonances within a control stage of a high speed turbine. An original method for steady state operation is used for the analysis of the stiffness matrix representing: initial displacement blade (nominal shape blade obtained by nominal working point of turbine) and residual stresses following local crossing yield plastic strain. In the analysis there has been found a possibility of occurance of the resonance frequency, and mistuning by showing the safe working ranges. The calculation used the 3D modal and harmonic analysis within computational solid dynamics (CSD) and the results were compared with the 0D data from literature. After local crossing of yields stresses, on the basis of the harmonic analysis, there has been shown operation of the blade in the resonance point. Before crossing the yield stresses the blade is working in mistuning and a safe point.
W artykule przedstawiono wpływ zastosowania upustu na sprawność turbiny gazowej. Upust w turbinie zrea-lizowano według idei prof. Roberta Szewalskiego, która polega na zastosowaniu upustu międzystopniowego w turbinie gazowej do podgrzewu powietrza zasilającego komorę spalania. Dzięki przeprowadzonej modyfikacji osiąga się wzrost sprawności obiegu oraz spadek zużycia paliwa. Analiza numeryczna obiegu cieplnego przed i po modernizacji została przeprowadzona za pomocą kodów CFM. Obiegiem wyjściowym dla przeprowadzonych obliczeń jest blok gazowo - parowy w Gorzowie Wielkopolskim.
EN
The modernization of the GT8C gas turbine into Szewalski cycle has been presented in the paper. The Szewalski idea is based on the exhaust gases extraction from gas turbine for air preheating before it enters the combustion chamber. The extracted gas transfers heat to air via the regenerative heat exchanger. Such modification leads to the cycle efficiency increase. Simultaneously amount of fuel burned in the combustion chamber decrease. The numerical analysis of thermal cycles, before and after the modification, has been carried out by means of an in-house COM-GAS code and Aspen Plus commercial package. Thermodynamic analysis has been performed assuming parameters characteristic for PGE Gorzow combined power plant.
Poprawne działanie systemów oddymiania i ochrony przed zadymieniem pionowych dróg ewakuacji nabiera szczególnego znaczenia w przypadku budynków wysokich, w których podjęcie akcji ratunkowej z zewnątrz budynku jest utrudnione lub niemożliwe.
A Baumann stage is one of the way, to increase the turbine’s output without an increase of the last stage blade length. Due to the complicated design, the Baumann’s blade technology is complex, and its efficiency is lower in comparison to a free-standing blade. Currently that stage is used mostly in back pressure cogeneration heating turbines. This paper presents the operation of low pressure part steam turbine in different conditions, calculated with two models of steam and compared to measurements and TURBINA 0D code.
PL
W pracy nawiązano do stopnia Baumanna i całej części niskoprężnej turbiny kondensacyjnej typu 13K215, w której występują różnice między pomiarami a danymi projektowymi określonymi na podstawie klasycznych narzędzi obliczeniowych typu „0D TURBINA”. Dlatego celem artykułu jest próba wyjaśnienia tych różnic poprzez, dokładniejszą niż 0D, symulację 3D przepływu kondensującej pary w części niskoprężnej turbiny.