Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 29

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Besides high-temperature calcium phosphates (CaPs), low-temperature calcium phosphate bone cements (CPCs), due to excellent biological properties: bioactivity, biocompability and osteoconductivity, are successfully used as bone substitutes. However, some disadvantages, related mainly to their low resorption rate and poor mechanical properties result in limited range of applications of these implant materials to non-loaded places in the skeletal system. To overcome this problem, magnesium phosphate cements (MPCs) with high strength have been considered as biomaterials. The main disadvantage of MPCs is that the acid-base setting reaction is an exothermic process that must be strictly controlled to avoid tissue necrosis. In this work, a new composite bone substitute (Hydroxyapatite Magnesium Phosphate Material – HMPM) based on hydroxyapatite (HA) and magnesium phosphate cement (MPC) with sodium pyrophosphate applied as a retardant of setting reaction was obtained. Its setting time was adequate for clinical applications. Combining properties of HA and MPC has made it possible to obtain microporous (showing bimodal pore size distribution in the range of 0.005–1.700 micrometers) potential implant material showing good surgical handiness and sufficient mechanical strength. Effectiveness of sodium pyrophosphate as a retardant of exothermic setting reaction of the new cement formulation was confirmed. After setting and hardening, the material consisted of hydroxyapatite and struvite as crystalline phases. Unreacted magnesium oxide was not detected.
PL
Kompozytowe substytuty kostne na bazie niskoporowatych granul fosforanowo-wapniowych otrzymano w wyniku zmieszania granul HA, TCP i BCP ze spoiwami opartymi na siarczanie(VI) wapnia (CSH) i hydroksyapatycie. Jako płyny służące do zarabiania zastosowano wodę destylowaną oraz 1% roztwór chitozanu w 0,3% kwasie octowym. Połączenie spoiw typu cementowego i granul fosforanowo-wapniowych pozwoliło otrzymać nowe, kompozytowe materiały implantacyjne o dobrej poręczności chirurgicznej, doskonałej biozgodności i odpowiednich właściwościach mechanicznych.
EN
Composite bone substitutes based on low-porous calcium phosphate granules were obtained by mixing HA, TCP or BCP granules with binders on the basis of calcium sulfate hemihydrate (CSH) and hydroxyapatite. As liquid phases distilled water or the 1% chitosan solution in 0.3% acetic acid were applied. Combining cement type self-setting binders and calcium phosphate granules resulted in new composites with good surgical handiness, excellent biocompatibility and appropriate mechanical properties.
PL
Fosforany wapnia (Calcium Phosphates - CaPs), stosowane z powodzeniem w regeneracji i rekonstrukcji tkanki kostnej, należą do grupy bioaktywnych materiałów zdolnych do bezpośredniego wiązania z kością. Interesującymi materiałami implantacyjnymi w postaci łatwo formujących się past cementowych są materiały dwufazowe na bazie HA (hydroksyapatytu) i α-TCP (α-fosforanu trójwapniowego) oraz HA i CSH (półwodnego siarczanu (VI) wapnia). Wprowadzenie do struktury hydroksyapatytu różnych jonów np. srebra lub magnezu wpływa na zmianę jego właściwości fizykochemicznych jak również biologicznych. Połączenie hydroksyapatytu i półwodnego siarczanu (VI) wapnia (ten drugi stosowany jest w medycynie od wielu lat pod nazwą Plaster of Paris) prowadzi do wytworzenia materiałów o wysokiej poręczności chirurgicznej i kontrolowanej biodegradacji. Celem pracy było wytworzenie oraz ocena potencjału bioaktywnego in vitro nowych materiałów kościozastępczych typu cementowego na bazie CaPs i CSH. W skład wyjściowych proszków cementowych wchodziły: zsyntezowany na wydziale Inżynierii Materiałowej i Ceramiki - AGH hydroksyapatyt dotowany srebrem (AgHA), węglanowy hydroksyapatyt dotowany magnezem (MgCHA), α-TCP oraz CSH (Acros Or- ganics). Jako płyny do zarabiania proszków cementowych zastosowano 1% roztwór chitozanu w 0,3% kwasie octowym oraz 0,75% roztwór metylocelulozy w 2% Na2HPO4. Opracowane materiały implantacyjne poddano badaniom czasu wiązania, składu fazowego oraz wytrzymałości mechanicznej. Wytworzone preparaty kościozastępcze przetrzymywano w symulowanym płynie fizjologicznym (SBF) przez okres 14 dni. Oznaczono zmiany stężenia pierwiastków: Ag, Ca, K, Mg, Na, S, P w płynie SBF w czasie trwania inkubacji wykorzystując technikę emisyjnej spektrometrii optycznej z indukcyjnie sprzężoną plazmą (IC- P-OES). Przeprowadzono przy pomocy skaningowego mikroskopu elektronowego obserwacje morfologii powierzchni uzyskanych materiałów po 7 i 14 dniach przetrzymywania ich w symulowanym płynie fizjologicznym. Badania SEM potwierdziły narastanie warstwy apatytowej na powierzchniach badanych preparatów, co wskazuje na ich charakter bioaktywny. Materiały implantacyjne, w których zastosowano półwodny siarczan (VI) wapnia, w związku z ich dużą podatnością do dezintegracji i biodegradacji, wykazywały odmienną morfologię powierzchni w porównaniu do preparatów, w których składnikiem wiążącym był α-TCP Wzrost zawartości: Ca i S w płynie SBF podczas trwania inkubacji badanych cementów z udziałem CSH po twierdziło ich stopniową degradację in vitro.
EN
Calcium Phosphates (CaPs), used successfully in the regeneration and reconstruction of bone tissue, belong to the group of bioactive materials, capable to form a direct bond with natural bone. Biphasic materials (bone substitutes) based on HA (hydroxyapatite) and α-TCP (α-tricalcium phosphate) as well as HA and CSH (calcium sulfate hemihydrate) in the form of easily shapeable cement pastes are very interesting implant materials. Introduction of different ions such as silver or magnesium into the structure of hydroxyapatite changes its physicochemical and biological properties. The combination of hydroxyapatite and calcium sulfate hemihydrate (the last one has been used in medicine for many years under the name of Plaster of Paris) leads to the fabrication of materials with high surgical handiness and controlled biodegradation. The aim of this study was development and evaluation of the bioactive potential in vitro of the new cement type bone substitutes based on CaPs and CSH. Initial cement powders consisted of synthesized at the Faculty of Materials Science and Ceramics - AGH-UST silver doped hydroxyapatite (AgHA), magnesium doped carbonated hydroxyapatite (MgCHA), α-TCP and CSH (Acros Organics). 1 wt.% chitosan solution in 0.3 wt.% acetic acid as well as 0.75 wt. % methylcellulose solution in 2 wt.% Na2HPO4 were applied as liquid phases. Setting time, phase composition and mechanical strength of developed implant materials were examined. Obtained bone substitutes were incubated in simulated body fluid (SBF) for 14 days. Changes in the concentration of the following elements: Ag, Ca, K, Mg, Na, S, P in SBF were determined by simultaneous inductively coupled plasma optical emission spectrometry (ICP-OES). Observations of the surface morphology of obtained materials after 7 and 14 days of incubation in simulated body fluid were carried out using scanning electron microscopy. SEM studies confirmed the growth of an apatite layer on the surfaces of tested materials, what indicates on their bioactivity. Implant materials based on calcium sulfate hemihydrate, due to their high susceptibility to disintegration and biodegradation, showed a different surface morphology compared to the materials based on a-TCP as a binding agent. The increase in the content of Ca and S elements in SBF during the incubation of studied bone cements with CSH confirmed their gradual degradation in vitro.
EN
Calcium phosphate cements (CPCs) are a family of self-setting, bone repair materials. CPCs possess excellent biocompatibility, surgical handiness and adequate mechanical properties but reveal slow resorption in vivo. Currently, very interesting group of CPCs are biomaterials composed of a-tricalcium phosphate (a-TCP, a-Ca3(PO4)2) and calcium sulfate. Calcium sulfate hemihydrate (CSH, CaSO40.5 H2O) posses a long clinical history in different fields of medicine and is widely recognized as a safe, fast setting and resorbable implant material. The main goal of this study was to investigate how different factors influence the phase composition and physico-chemical properties of the new, cement-type material on the basis of a-TCP, CSH and anhydrous dicalcium phosphate (DCP, CaHPO4). In presented work two different powder phase compositions and three liquid phases were used to produce new bone substitutes. XRD results showed that obtained materials, after setting and hardening, consisted of α-TCP, DCP, DCPD (CaHPO42H2O), HA and bassanite phases. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles and differed in the range of 4-14 min (I) and 10-30 min (F). Increase in the amount of CSH in the powder component resulted in shortening of setting time. Microstructure of cements was evaluated on the fractured samples by scanning electron microscopy (SEM) and the porosity via mercury porosimetry. Open porosity of the final materials was similar for all investigated compositions. Compressive strength depended on the composition and increased steadily over a period of maturation. The results obtained suggest that calcium phosphate/sulfate bone cement has the potential to be applied for bone augmentation.
6
Content available remote Influence of liquid phase on physical properties of the new triphasic bone cement
EN
Purpose: The aim of this work was to develop a new bone cement based on hydroxyapatite (HAp), âTCP and calcium sulfate hemihydrate (CSH) and to determine the influence of a liquid phase, used for cement pastes preparation, on physical properties of the final implant material. Design/methodology/approach: The powder phase consisting of CSH (60 wt.%) and HAp+ âTCP (40 wt.%) was applied. Composite samples were prepared using distilled water, chitosan and methylcellulose solutions as the liquid phases. Rheological properties of the solutions were measured by Brookfield rheometer. Initial and final setting times of the cement pastes were determined. Phase composition of hardened bodies was established using XRD method. Microstructure was investigated by SEM while pore size distribution by mercury porosimetry. Compressive strength was measured by Instron Universal Testing Machine. Findings: According to the conducted rheological measurements of the methylcellulose and chitosan solutions as well as evaluated cement pastes and hardened bodies properties, the optimal setting liquids were chosen. Research limitations/implications: The evaluation of a biological response to the developed materials, including in vitro and in vivo experiments, need to be done. Practical implications: The possibility of creation the physical properties of setting in vivo composites, designed for filling bone defects, via establishing the suitable liquid phase was confirmed. Originality/value: The new composite type triphasic bone substitute, based on CSH, HAp and âTCP, with superior resorbability in comparison to the commercially available calcium phosphate bone cements was developed. The influence of liquid phase on the microstructure and mechanical strength of this implant material was determined.
PL
W ostatnich latach coraz większe zainteresowane budzą biomateriały do wypełniania ubytków kostnych wykazujące właściwości wiążące in situ. Obecnie na rynku dostępnych jest wiele komercyjnych produktów, jednak wciąż nie ustają próby zmierzające do wytworzenia nowego substytutu kostnego, o ulepszonych właściwościach mechanicznych i biologicznych. Materiały oparte na fosforanach(V) wapnia (włącznie z hydroksyapatytem, HA) cieszą się szczególnym zainteresowaniem ze względu na ich doskonalą biozgodność oraz bioaktywność. Siarczan(VI) wapnia od szeregu lat używany jest do celów klinicznych, a jako wypełniacz kostny jest dobrze tolerowalny przez organizm. W obecnych badaniach opracowano dwufazowy, wiążący substytut kostny na bazie siarczanu(VI) wapnia oraz dotowanego tytanem hydroksyapatytu. Do wytworzenia tego biomateriału użyto półwodnego siarczanu(VI) wapnia (CSH) oraz trzech proszków hydroksyapatytowych dotowanych tytanem (TiHA): surowego oraz kalcynowanych w 800 i 1250°C. Celem badań było określenie wpływu obróbki cieplnej hydroksyapatytu dotowanego tytanem na czas wiązania, właściwości mechaniczne oraz zachowanie w warunkach in vitro w sztucznym osoczu krwi (SBF) kompozytu opartego na siarczanie(VI) wapnia i TiHA. Rezultaty badań wskazują, że materiały wiążące TiHA-CS są biokompatybilne, łatwo kształtowalne oraz posiadają potencjalne zastosowanie do uzupełniania ubytków kostnych.
EN
Biomaterials with the self-setting in situ properties for the use in human bone tissue augmentation have attracted increasing attention in recent years. Currently many commercial products exist on the market, however the efforts still proceed to achieve a novel bone substitute with improved mechanical and biological properties. Calcium phosphate based materials, including hydroxyapatite (HA), have been of special interest due to their excellent biocompatibility and bioactivity. Calcium sulfate has also a long history of clinical use and it is known to be well-tolerated by organism when used as a bone filler. In this study, a biphasic, self-setting bone substitute was developed, basing on calcium sulfate and titanium doped hydroxyapatite. Calcium sulfate hemihydrate (CSH) and three different Ti doped hydroxyapatite powders (TiHA): raw and calcined at 800°C and 1250°C were used to form the new biomaterial. The aim of this study was to investigate how heat treatment of titanium doped hydroxyapatite influenced the setting time, mechanical properties and in vitro behaviour in simulated body fluid (SBF) of the calcium sulfate - TiHA composites. The results of our studies suggest that TiHA-CS self-setting materials are biocompatible, easily shapeable and have a potential to be applied for bone substitution.
8
Content available remote Wpływ granul hydroksyapatytu na hodowlę osteoblastów in vitro
PL
Hydroksyapatyt (HAp) jest nieorganicznym składnikiem tkanki kostnej. W ortopedii i stomatologii jako substytut tego składnika stosuje się syntetyczną bioceramikę hydroksyapatytową o różnym stopniu porowatości i rozmieszczeniu porów. W niniejszej pracy oznaczano biokompatybilność 3. typów granul HAp różniących się mikrostrukturą i krystalicznością. Badania in vitro przeprowadzono z zastosowaniem linii komórkowej hFOB 1.19 (ludzkie płodowe osteoblasty). Biokompatybilność oszacowano metodą pośrednią za pomocą płynnych ekstraktów uzyskanych przez umieszczenie granul HAp w świeżym podłożu hodowlanym na 24 godz. w 37°C. Żywotność komórek hFOB określono z użyciem 2. testów – MTT i NRU. Biokompatybilność testowanych materiałów potwierdzono również poprzez obserwację w mikroskopie konfokalnym. Dodatkowo, oznaczono stężenie jonów Ca2+ i Mg2+ w testowanych ekstraktach za pomocą absorpcyjnej spektrometrii atomowej (ASA). Wyniki badań wyraźnie wskazały, że granule HAp w zależności od mikrostruktury, a głównie stopnia ich porowatości, mogą powodować wychwyt jonów Ca2+ i Mg2+ z podłoża hodowlanego, co może wpływać na metabolizm hodowanych komórek.
EN
Hydroxyapatite (HAp) is the inorganic component of the bone tissue. Synthetic HAp bioceramics with various degree of porosity and pore size distribution is widely used in orthopaedics and dentistry. In this study, the biocompatibility of 3 types of HAp granules with different microstructure and crystallinity was evaluated. In vitro tests were carried out using the hFOB 1.19 human fetal osteoblastic cell line. Biocompatibility was estimated indirectly by means of fl uid extracts obtained by immersing the granules in fresh growth medium for 24 hours at 37°C. Viability of hFOB cells was assessed by 2 methods – MTT and NRU. Biocompatibility of the studied materials was also confirmed by observation under the confocal microscope. Additionally, elemental Mg2+ and Ca2+ concentrations of tested extracts were evaluated by atomic absorption spectrometry (ASA). Our studies clearly indicate that HAp granules depending on their microstructure, mainly porosity, can cause different uptake of Ca2+ and Mg2+ ions from the growth medium what affects the metabolism of cultured cells.
PL
Z powodu znakomitej biokompatybilności i bioaktywności fosforany wapnia takie jak hydroksyapatyt (Ca10(PO4)6(OH)2) oraz ß-TCP (Ca3(PO4)2) są z powodzeniem stosowane jako substytuty kostne w ortopedii, chirurgii twarzoczaszki i stomatologii. Jednak, zastosowanie tych materiałów w medycynie ogranicza się do miejsc nie przenoszących znacznych obciążeń ze względu na ich kruchość i niską wytrzymałość mechaniczną. Ich niedostatkiem jest także niezadowalająca poręczność chirurgiczna utrudniająca założenie do ubytków kostnych. Praca dotyczy opracowania i oceny kompozytu złożonego z hydroksyapatytu (HA), cementu magnezowo–fosforanowego (MPC) oraz półwodnego siarczanu(VI) wapnia (CSH) o parametrach optymalnych dla zastosowań medycznych.
EN
Because of excellent biocompatibility and bioactivity, calcium phosphates such as hydroxyapatite (Ca10(PO4)6(OH)2) and ß-TCP (Ca3(PO4)2) are successfully used as bone substitutes in orthopaedics, maxillofacial surgery and dentistry. However, due to low mechanical strength and brittleness, the application of these biomaterials in medicine is limited to places not loaded significantly. Limited surgical handiness is also a disadvantage of calcium phosphates, what makes diffi cult to place the material into bone voids. This study is focused on development of composites containing hydroxyapatite (HA), magnesium–phosphate cement (MPC) and calcium sulphate hemihydrate (CSH), and showing the optimum parameters for medical applications.
PL
Makroporowate tworzywa oparte na ortofosforanach wapnia (CaPs, Calcium Phosphates), głównie hydroksyapatycie i ?-TCP, cieszą się nadal dużym zainteresowaniem ze względu na już istniejące oraz pojawiające się nowe możliwości ich aplikacji. Materiały te mają właściwości sprzyjające i stymulujące formowanie się kości, co czyni je interesującymi kandydatami dla medycyny regeneracyjnej oraz inżynierii tkankowej. Celem pracy było otrzymanie oraz charakterystyka wysokoporowatych tworzyw opartych na CaPs. Makroporowata bioceramika: HAp i dwufazowa (BCP) o porowatości od 74 do 84% została wytworzona metodą odwzorowania porowatej matrycy organicznej. Określono wpływ warunków wypalania na parametry otrzymanych tworzyw: skład fazowy, porowatość, skurczliwość liniową wypalania i wytrzymałość mechaniczną. Zbadano również wpływ środka powierzchniowo czynnego dodanego do zawiesin na właściwości tworzyw finalnych. Ustalono zależność pomiędzy porowatością otrzymanych tworzyw a ich wytrzymałością na ściskanie.
EN
Macroporous calcium phosphate based materials (CaPs), mainly hydroxyapatite and ?-TCP, are still of great interest because of the already existing and arising new fields for their applications. Those materials possess superior properties for the stimulation of bone formation which make them attractive candidates for regenerative medicine and tissue engineering. The aim of this study was the fabrication and characterization of highly porous CaPs based materials. Macroporous bioceramics: HAp and biphasic (BCP) with porosity from 74 to 84% were produced by replacement of the porous organic matrix. The influence of the heating conditions on the parameters of the obtained materials, namely the phase composition, porosity, linear shrinkage and mechanical strength was investigated. The effect of the surfactant, added to the slurries, on the characteristic of the final materials was also determined. The correlation between the compressive strength and the porosity of the obtained materials was determined.
PL
Podstawowe cechy materiałów kościozastępczych takie jak bioaktywność i biokompatybilność, mogą być badane in vitro przy wykorzystaniu roztworu imitującego płyn tkankowy tzw. płyn SBF. Dwufazowy kompozyt, przeznaczony do wypełniania ubytków kostnych, został wykonany z granul hydroksyapatytu węglanowego i polimeru polisacharydowego. Biomateriał testowano pod kątem zdolności tworzenia warstwy apatytu w roztworze SBF przez okres 30 dni. Po tym czasie powierzchnię próbek i płyn po inkubacji, poddano analizie z wykorzystaniem SEM-EDX. Wykazano tworzenie warstwy apatytowej na powierzchni kompozytu kościozastępczego.
EN
Biocompatibility and bioactivity, elementary characteristics of bone substitute materials, can be examined in vitro using solution that simulates body fluids. Two-phase composite, intended for filling bone defects, was made of carbonated hydroxyapatite granules and polysaccharide polymer. Biomaterial was tested whether it can form apatite layer during soaking in SBF solution for 30 days. After that time, the surface of composite samples and the fluid were analyzed using SEM-EDX. Our observations indicate the ability of a bone substitute biomaterial to form apatite layer on its surface.
EN
The current and very popular approach to improving physicochemical and biological properties of hydroxyapatite implants is to incorporate some ions to HA structure. In this study we report the influence of titanium additives on sinterability, phase composition, microstructure, flexural strength and chemical stability of Ti-modified hydroxyapatite ceramics. Hydroxyapatite powders doped with various concentrations of Ti (0.5, 1.0 and 2.0 wt%) were produced by a wet method. In such a synthesis CaO, H3PO4 and TiCl3 were applied as reactants. The modification of HA structure by incorporation of titanium caused thermal decomposition of hydroxyapatite. During heat treatment perovskite (CaTiO3) and αTCP as the secondary phases were formed. Titanium additives decreased sinterability and flexural strength of Ti-HA ceramics. The obtained materials were chemically stable (pH values measured in SBF were close to the physiological value - during the 90 days of incubation changed in the narrow range from 7.48 to 7.70). Ionic conductivity of aqueous extracts was low (5-45 µS) and increased with the amount of titanium additive. The bioactive potential of Ti modified HA-ceramics was confirmed.
PL
W celu poprawy parametrów fizykochemicznych oraz biologicznych implantów hydroksyapatytowych stosuje się modyfikacje tego związku na drodze wprowadzania do jego struktury różnorakich jonów. W niniejszych badaniach przedstawiony został wpływ dodatków tytanu na spiekalność, skład fazowy, mikrostrukturę, wytrzymałość na zginanie oraz stabilność chemiczną ceramiki hydroksyapatytowej modyfikowanej tytanem. Proszki hydroksyapatytowe o różnej zawartości Ti (0,5, 1,0 and 2,0 % mas.) zsyntetyzowane zostały przy pomocy metody mokrej. Substratami w trakcie syntezy były następujące związki chemiczne: CaO, H3PO4 oraz TiCl3. Modyfikacja struktury hydroksyapatytu poprzez wprowadzenie jonów tytanowych stała się przyczyną dekompozycji temperaturowej związku. Podczas ogrzewania oprócz HA pojawiły się nowe fazy: perowskit (CaTiO3) oraz αTCP. Dodatek tytanu spowodował obniżenie spiekalności oraz wytrzymałości mechanicznej ceramiki Ti-HA. Otrzymane materiały charakteryzowały się stabilnością chemiczną (wartości pH mierzone podczas inkubacji próbek w SBF były zbliżone do pH fizjologicznego - podczas 90 dni inkubacji zmiana pH nastąpiła jedynie w wąskim zakresie 7,48 – 7,70). Przewodnictwo jonowe ekstraktów wodnych utrzymywało się na niskim poziomie (5 – 45 µS) i rosło wraz ze wzrostem ilości wprowadzonego tytanu. Potwierdzono potencjał bioaktywny ceramiki HA modyfikowanej tytanem.
PL
Celem przeprowadzonych badań było uzyskanie, charakterystyka składu fazowego i mikrostruktury oraz ocena biologiczna wysokoporowatych materiałów implantacyjnych na bazie hydroksyapatytu. Materiały te zostały otrzymane metodą żelowania spienionej zawiesiny oraz poprzez odwzorowanie porowatej matrycy organicznej. Wykazano, że obie powyższe metody pozwalają uzyskać monofazową bioceramikę hydroksyapatytową o wielkości makroporów dochodzących do 900 μm. Przy zastosowaniu metody odlewania żelowego spienionej zawiesiny dodatkowo obecne są na ściankach otaczających sferyczne makropory okienka o rozmiarze 10–200 μm. Interesująca architektura porów tworzywa wyprodukowanego na bazie gąbki poliuretanowej pozwoliła uzyskać podczas hodowli komórkowej bardziej równomierne rozmieszczenie komórek w całej objętości próbek.
EN
The aim of this study was fabrication, characteristisation of phase composition and microstructure, as well as biological evaluation of the highly porous hydroxyapatite-based implantation materials. The methods of gelcasting of foams and replacement of porous organic matrix were used to fabricate the materials. It was stated that each method results in obtaining monophase hydroxyapatite bioceramics with the size of macropores up to 900 μm. When the gelcasting of foams method was applied, windows were additionally present in the walls surrounding the spherical macropores. Interesting pores architecture of the material produced on the basis of polyurethane spongy let a more homogeneous cell distribution in the whole volume of the samples to be obtained during the cell culture.
PL
W niniejszej pracy, tworzywa fosforanowo-wapniowe będące monofazową ceramiką βTCP lub αTCP oraz materiał dwufazowy BTCP (βTCP + αTCP), poddano ocenie biologicznej w oparciu o badania in vitro. Określono stabilność chemiczną powyższych materiałów, stanowiącą przesłankę do oceny ich podatności na korozję i biodegradację. Uzyskane wyniki badań pozwoliły określić potencjał bioaktywności badanych tworzyw.
EN
In the present work, monophase βTCP or αTCP as well as biphasic BTCP ceramics (βTCP + αTCP) were biologically evaluated using the in vitro test. The chemical stability of above materials, indicating their susceptibility to corrosion and biodegradation, was estimated. The obtained results allowed the bioactive potential of investigated materials to be determined.
15
Content available remote New bone implant material with calcium sulfate and Ti modified hydroxyapatite
EN
Purpose: In this work, calcium sulfate hemihydrate (CSH) was combined with titanium doped hydroxyapatite (TiHA) to develop a novel bone cement. Results of previous studies showed that bioactive potential of titanium modified hydroxyapatite ceramics is higher than that of pure HA. Calcium sulfate hemihydrate is also considered as a safe, biocompatible material, however it has been criticized for its rapid resorption. Combination of these materials may result in new cement type material with surgical handiness and selective resorption. Design/methodology/approach: TiHA was obtained by a wet method. Three compositions with different CSH:TiHA weight ratios, namely 3:2, 2:3 and 1:4 were examined. Pure CSH was used as a reference. Distilled water and Na2HPO4 solutions were applied as liquid phases. The study presents the setting time (Gillmore apparatus), phase composition (XRD), microstructure (SEM), porosity (mercury porosimetry) and compressive strength of the obtained new, cement type, implant material. Findings: Initial (I) and final (F) setting times of the obtained cements differed in the range of 2-16 min (I) and 4-75 min (F). The phase composition of the hardened cement bodies characterized by XRD method revealed the presence of calcium sulfate dihydrate (CSD) and hydroxyapatite. Scanning electron microscopy images show excellent bonding between needle-like CSD crystals and apatitic phase. Porosity of the final samples varied from 49 to 59% with pore size diameter from 5 nm to 3.0 ěm. Compressive strength of the samples differed in the range of 3.81-7.58 MPa. Research limitations/implications: The obtained results suggest that CSH-TiHA cements have the potential to be applied in bone substitution and for delivery of drugs. Bioactivity and biodegradation of the studied materials should be checked. Originality/value: According to our knowledge, these are the first studies concerning surgical handiness of bone implant materials based on calcium sufate hemihydrate and titanium doped hydroxyapatite. The cement type composites are biocompatible, shapeable and easy to apply and adapt in bone defects.
PL
Otrzymano hydroksyapatyty zmodyfikowane manganem (MnHAp) poprzez współstrącenie manganu i wapnia z jonami PO4 (3-) (zawartość manganu wyniosła od 0,1% mas. do 1,0% mas.). Celem niniejszej pracy było zbadanie wpływu dodatków Mn na: zachowanie się podczas spiekania, strukturę, stabilność termiczną, barwę, wytrzymałość mechaniczną oraz stabilność chemiczną bioceramiki hydroksyapatytowej dotowanej manganem.
EN
The Mn modified hydroxyapatites (MnHAps) were prepared by coprecipitation of manganese and calcium with PO4 (3-) ions (the content of Mn ranged from 0,1 wt.% to 1,0% wt.%). The aim of this work was to study the effect of Mn additions on: sintering behavior, structure, thermal stability, color changes, mechanical strength and chemical stability of manganese doped hydroxyapatite bioceramics.
PL
Wytworzono gęstwy ceramiczne zawierające 68%wag proszku hydroksyapatytowego oraz Dispex A-40 lub Dolapix PC67 jako upłynniacze jak też poli(alkohol winylowy) lub metylocelulozę jako spoiwa. Zbadano właściwości reologiczne tych mas. Określono wpływ dodatków na charakter krzywych płynięcia, lepkość oraz tiksotropię gęstw.
EN
Ceramic slurries composed of 68 wt% of hydroxyapatite powder and containing Dispex A-40 or Dolapix C67 as dispersants and poly(vinyl alcohol) or methylocellulose as binders were produced. Rheological properties of the slips were investigated. The influence of the additives on the character of flow curves, viscosity and thixotropy of the slurries have been estimated.
EN
Novel organic/inorganic hybrid materials prepared from multiblock terpolymer as a polymeric matrix containing phthalic acid segments (as in poly(butylene terephthalate) (PBT) as hard block and hydrogenerated dimmer fatty acid, namely dilinoleic acid sequences (DLA) as hydrophobic soft block, and poly(ethylene glycol) (PEG) as second soft block of hydrophilic nature are presented in this work. Two types of nanocrystalline hydroxyapatites (non-calcined, HAP I, and sintered, HAP III) were used in amount of 0.5 wt% as inorganic phase within hydrophilic/hydrophobic multiblock terpolymer matrix. These hybrid materials were prepared during in situ polycondensation method. Alpha-tocopherol was used as non-toxic thermal stabilizer since these materials are targeted for biomedical applications. Additionally, the possibility of stabilizing effect of HAPs was evaluated through the synthesis of nanocomposites without alpha-tocopherol (only in the presence of HAP). It has been found that naocrystalline hydroxyapatite can serve as a very effective stabilizing agent in term of the enhancement of mechanical properties of poly(ester-ether-ester) terpolymers containing PEG. Thermal and mechanical properties of organic/inorganic composite (hybrid) materials were strongly dependent on the type of HAP: higher tensile stress and strain, and increased glass transition temperature were found for composites containing sintered HAP III.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.