Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, an attempt has been made to differentiate HEp-2 cellular shapes using Bag-of keypoint features and optimization. For this, the images are considered from a publicly available database. To increase the cell structure visibility, the images are pre-processed using edge-sensitive local contrast enhancement. Further, the Speeded-up Robust Feature (SURF) keypoints are extracted and Bag-of-keypoints for each shape are generated. These features are subjected to Ant Colony Optimization (ACO) algorithm for feature selection. The optimal features obtained are then fed to Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) classifiers. Results show that the ACO algorithm can identify the optimal features that characterize the cellular shapes. SVM and kNN are able to differentiate between the shapes with an average classification accuracy of 93.6% and 94.8% respectively. Since differential diagnosis of HEp-2 cellular shapes is significant in the disease-specific prognosis and treatment, this study seems to be clinically relevant.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.