Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Road traffic accidents involving coaches do not happen very often, but they are very dangerous because they affect a large number of passengers. Coaches (or intercity buses) are not equipped with safety belt harnesses. Valid regulations do not impose any obligation on coach manufacturers to provide intercity buses with either two- or three-point safety belts. This fact may result from the unawareness of risks and injuries that might befall the passengers with no safety belts during accidents. That is the reason why this work aims to compare the aftermath of coach accidents with no safety belts and the ones with safety belts. A detailed aim of this research is to analyse the results of dynamic loads during a frontal impact exerted on coach passengers travelling with and without (two- and three-point) safety belts. This objective was achieved by performing experimental studies and modelling which focused on the process of dynamic load transfer on the human body during a traffic accident. The research was conducted parallel on an adult and a child. The equivalent of a 50th percentile male was a hybrid III dummy (M50), whereas a child at the age of about 10 was represented by a P10 dummy. A numerical model was generated and verified in experimental testing in the scope of kinematics. Also, the comparison of the recorded courses of forces, acceleration, and moments was conducted. The results obtained from the tests were analyzed regarding the injury criteria for head, neck, and thorax. It was observed that both for the two-point safety system and the lack of safety belts, there were high values of acceleration recorded in the centre of gravity of the head. On the basis of the investigations conducted, it was ascertained that only a three-point safety belt system ensures the satisfaction of all injury criteria within admissible standards both in the case of criteria defined in the rules no. 80 and the rules no. 94 determined by the United Nations Economic Commission for Europe. It is the three-point safety belt system which should be obligatory in all intercity buses.
2
Content available remote Numerical modelling of post-ground subsystem in road safety barrier crash tests
EN
A new analytical algorithm for determining the elastoplastic parameters for soft, medium and hard plastic cohesive soils, corresponding to *MAT_005_SOIL_AND_FOAM material model available LS-Dyna FE code, was formulated. The numerical modelling of the post-soil subsystem, applicable in the modelling of road safety barrier crash tests using this material model of the roadside dehydrated ground, was developed. The methodology was presented on the example of a Sigma-100 steel post partly driven into the soil and subjected to a static flexural-torsional test using a horizontal tensioned rope. The experimental validation of the numerical modelling and simulation was carried out on the testing site at the Automotive Industry Institute, Warsaw, Poland. The simulations were carried out for numerical models with soil solid elements with reduced integration (ELFORM_1) and full integration (ELFORM_2). The simulation results are in the form of graphs of the rope tension vs. displacement of the upper measurement point of the post and in the form of deformation of the post-soil system. It was shown that the validation experiment was carried out on the post embedded in hydrated soft plastic cohesive soil.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.