Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
At present peristaltic pumps are widely used in many branches of industry and national economy. Simplicity of construction, processability and possibility of pumping liquids with big quantity of solid particles are the main advantages while using peristaltic pumps. Therefore development of methods of rational choice of parameters at designing of peristaltic pumps is the actual problem. To develop universal mathematical models of dynamic processes in peristaltic pumps for definition of rational technical parameters. In dynamic processes we propose to use differential equations of motion in the Lagrange form, where the angle of rotation of the pump rotor is taken as a universal coordinate. Mathematical model of dynamic processes in peristaltic pump with hydraulic drive has been created on the base of differential equation. The function of resistance forces caused by gravity forces of mixture particles in the hose reel has been determined. On the basis of the non-linear model of the resistance forces to the flow of the fluid Bingham method of constructing the dependence of the pressure drop on the angular velocity of the rotor to determine the resistance forces to the flow of the fluid has been proposed. The result of dynamic processes simulation is the determination of interrelationship of technological parameters of the device functioning: the velocity of the medium and pump performance is increasing at reducing the length of the diverting hose and reducing the height of its rise; a significant influence on the average speed has plastic viscosity of the environment; a significant change in the yield strength has an insignificant impact on the speed.
EN
The paper presents the schemes of various equipment for the mechanical treatment of the industrial and domestic wastewater, which allows removing it from the main part of the pollution. An examination of the shortcomings of the known equipment with the aim of its improvement was conducted. As a result, an installation scheme for continuous high-performance mechanical wastewater treatment was proposed. In contrast to the known equipment, the proposed installation provides a three-staged treatment of wastewater with the help of the two pairs of gratings – for preliminary treatment (removal of large-size pollutions) and by filtration through the two metallic sieves – for normal and fine treatment (removal of small-size mechanical pollutions). The installation consists of highly-efficient appliances for the cleaning of filtering elements in the course of realization of the working process, which provides stable high productivity of treatment. The installation has simple reliable design and low energy expenses. The paper contains the formulas for determining of main operational parameters of the installation: the change of the cross-sectional area of the filtering elements and productivity of the working process, periodicity of cleaning of gratings and sieves, the necessary electric power of installations drives. These formulas can be a basis for further research of installation and for elaboration of a method of its design calculation.
EN
The working process and regularities of the functioning of vibrating and vibro-impact machines based on hydroimpulse drive with a singlestage valve pulser are analyzed. The essential characteristics determining the conditions for the excitation and existence of periodic oscillations of the valve-pulser shut-off valve are determined. Using the criterion of A. Hurwitz, based on the differential equation of motion, the existence of undamped periodic oscillations of the valve-pulser shut-off valve is analytically justified.
PL
Przeanalizowano działanie i regularność pracy maszyn wibracyjnych oraz maszyn poddawanych wibracjom opartych na napędzie hydro-impulsowym z jednostopniowym zaworem impulsowym. Określono podstawowe cechy wpływające na warunki wzbudzenia oraz występowania drgań okresowych zaworu impulsowego. Przy zastosowaniu kryterium A. Hurwitza, opartego na równaniu różniczkowym ruchu, istnienie nietłumionych drgań okresowych zaworu impulsowego jest analitycznie uzasadnione.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.