Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In Morocco, the intensive use of agricultural land coupled with irregular precipitation is a serious threat to the country’s food security. Conservation agriculture especially no-tillage (NT) system has shown an important result in the semi-arid regions of Morocco, but its dissemination to other, more humid, agro-ecological zones (precipitation > 350 mm) is still low. For this purpose, a field experiment under NT system has been installed since 2004 in the Zaer Plateau (Central Morocco) to study the adaptation of this system to the irregular rainfall compared to a conventional tillage (CT). Yields (grain and biomass) of crops (wheat and lentil) under NT and CT were analyzed and compared over the years of study. The ANOVA test showed that yields over the seven years were significantly different and that both crop yields under NT system were greater than or equal to those under CT system even though lentil is more vulnerable to extreme climate events under CT and NT systems. Unlike NT, yields under CT were significantly correlated with the rainfall amount received during the crop cycle. This indicates the dependence of CT precipitation, whereas NT is more adaptable to the irregularities of the climate in the study area.
EN
Heavy metals in mine tailings induce severe environmental contamination of terrestrial ecosystems. They are hazardous to human health and must be cleaned up. However, ex-situ procedures are costly and soil-destroying. Phytoremediation approaches might be a cost-effective and environmentally friendly option. Phytostabilization of mine tailings, which employs plants, is a commonly used technique for preventing the spread of contaminants and particles from the site. Nutrient-deficient mine tailings must be amended to increase plant growth and phytoremediation performance. This study aims to investigate the tolerance of Atriplex nummularia to high heavy metal levels (Pb, Zn, and Cu) and the effects of compost and chemical fertilizer on biomass generation and heavy metal uptake. Halophyte species have been commonly employed for the phytoremediation of soil polluted with heavy metals. A pot experiment was undertaken with four treatments: T1 (agricultural soil), T2 (mine tailings), T3 (mine tailings mixed with compost), and T4 (mine tailings with chemical fertilizer). Results showed that both amendments demonstrated a significant beneficial effect on growth and biomass production. For all treatments, metals mostly accumulated in the roots, with only a small amount transferred to the shoots. Compost application resulted in a higher Pb concentration in roots than chemical fertilizer. The results of this study suggest that Atriplex nummularia can be used in phytostabilization for these types of mine tailings. However, long-term field data is needed to improve understanding of the Atriplex nummularia tolerance to high concentrations of heavy metals, as well as their uptake and translocation to aerial components.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.