Marine centrifugal fans usually work in harsh environments. Their vibration signals are non-linear. The traditional fault diagnosis methods of fans require much calculation and have low operating efficiency. Only shallow fault features can be extracted. As a result, the diagnosis accuracy is not high. It is difficult to realize the end-to-end fault diagnosis. Combining the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and lightweight neural network, a fault classification method is proposed. First, the CEEMDAN can decompose the vibration signal into several intrinsic modal functions (IMF). Then, the original signals can be transformed into 2-D images through pseudocolour coding of the IMFs. Finally, they are fed into the lightweight neural network for fault diagnosis. By embedding a convolutional block attention module (CBAM), the ability of the network to extract critical feature information is improved. The results show that the proposed method can adaptively extract the fault characteristics of a marine centrifugal fan. While the model is lightweight, the overall diagnostic accuracy can reach 99.3%. As exploratory basic research, this method can provide a reference for intelligent fault diagnosis systems on ships.
The vibration signals on marine blowers are non-linear and non-stationary. In addition, the equipment in marine engine room is numerous and affects each other, which makes it difficult to extract fault features of vibration signals in the time domain. This paper proposes a fault diagnosis method based on the combination of Ensemble Empirical Mode Decomposition (EEMD), an Autoregressive model (AR model) and the correlation coefficient method. Firstly, a series of Intrinsic Mode Function (IMF) components were obtained after the vibration signal was decomposed by EEMD. Secondly, effective IMF components were selected by the correlation coefficient method. AR models were established and the power spectrum was analysed. It was verified that blower failure can be accurately diagnosed. In addition, an intelligent diagnosis method was proposed based on the combination of EEMD energy and a Back Propagation Neural Network (BPNN), with a correlation coefficient method to get effective IMF components, and the energy components were calculated, normalised as a feature vector. Finally, the feature vector was sent to the BPNN for training and state recognition. The results indicated that the EEMD-BPNN intelligent fault diagnosis method is suitable for higly accurate fault diagnosis of marine blowers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.