Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper is devoted to the analytical modelling of a simply supported expanded-tapered sandwich beam. The simplified analytical model of this beam with omitting the shear effect is elaborated. Based on Hamilton’s principle, the differential equation of motion of this beam is obtained. This equation is analytically solved with consideration of the deflection line of this beam subjected to its own weight. The fundamental natural frequencies for exemplary beams are derived. Moreover, the FEM model of the beam in the ABAQUS is developed. The calculation results of the fundamental natural frequency of exemplary beams of these two methods are presented in tables and figures.
2
Content available Strength of a bent sandwich beam with clamped ends
EN
The subject of the work is a symmetrical sandwich beam with clamped ends under uniformly distributed load. The system of two equilibrium equations, formulated taking into account the literature, was solved analytically. The function of the shear effect and the maximum deflection of the beam were determined. The stress state at the clamped end of the beam is described in detail. The significant influence of the shear effect on the normal stresses in the outer layers of the beam near the clamped end was indicated. Exemplary calculations were made for the adopted family of beams. Moreover, the numerical FEM model of the beam was developed and calculations were made for this adopted family of beams. A comparative analysis of the obtained results was carried out.
EN
The aim of this work is to propose a sandwich beam with stepped layer thickness in three parts along its length. The total depth, width of the cross-section and its mass are constant. The beam is under a uniformly distributed load. The system of two equilibrium equa-tions was formulated for each part based on the literature. This system was analytically solved for the successive parts of the beam and the functions of the shear effect and deflection were determined in them. The effective stepped layer thicknesses was determined on the basis of the adopted criterion for minimizing the maximum deflection of the beam. The example calculations were made for two elected beams. The effective shapes of these beams are shown in the figures. Moreover, FEM numerical calculations of the deflections of these beams are performed.
EN
In the article a tool for calculating the braking distance of rail vehicles developed as part of R&D project conducted at the Institute of Rail Vehicles in Poznan (Poland) was presented. The tool used high-level programming language – Python for determining the braking distance of railway vehicles in accordance with the algorithm presented in the EN 14531 standard. The developed tool takes into account the theoretical curve of pressure build-up in the brake cylinder and the variability of the friction coefficient with time during the braking process. The paper presents the results of calculating the braking distance of the electric multiple unit.
5
Content available Bending of a stepped sandwich beam: the shear effect
EN
This paper is devoted to the stepped sandwich beam with clamped ends subjected to a uniformly distributed load. The bending problem of the beam is formulated and solved with consideration of the classical sandwich beam of constant face thickness. Two differential equations of equilibrium based on the principle of the stationary potential energy of the classical beam are obtained and analytically solved. Moreover, numerical-FEM models of the beams are developed. Deflections for an exemplary beam family with the use of two methods are calculated. The results of the study are presented in figures and tables.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.