Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Salam leaves, a traditional food flavoring spice, are a widely recognized herb in Indonesia and are used in many regions. This study aimed to investigate the drying kinetics of salam leaves, comprising mathematical modeling, moisture diffusivity, and other nutritional values as qualitative parameters. The drying process was examined using a forced convective system (CSD) and open sun drying (OSD). The drying behavior was examined by observing the drying kinetics characteristics using 12 thin-layer semi-theoretical mathematical for drying of agricultural products, determining the moisture diffusivity, as well as measuring the content of chlorophyll a, b, and total dissolved solids as nutritional quality indicators of the drying products. According to the obtained results from the non-linear regression analysis, the Midilli model demonstrates the highest degree of appropriateness for drying salam leaves. The moisture diffusivity of CSD is greater than that of open-air solar drying. Regarding nutritional composition, the study revealed that chlorophyll a, b, and carotenoid levels in the dried leaves obtained through CSD were more significant than those obtained by OSD. As an environmentally friendly dryer, CSD can potentially be applied in herb-drying industries, especially salam leaves.
EN
Plants on the land quickly wilt and perish due to the extended dry season, severe temperatures, heat, and glaring sunlight. This issue has impacted red lettuce, which has commercial value and high marketing prospects. Providing plants with water and fertilizer during the dry season must be efficient and exact. Excess fertilizer application pollutes the environment. In the dry season, drip irrigation with IoT-based liquid fertilizer distribution is projected to save water and fertilizer due to low discharge and high frequency. The study’s goal is to provide effective autonomous distribution of water and fertilizer to red lettuce plants in order to achieve precision environmentally friendly agriculture. A split-plot design with a main plot and subplots was used to structure the research. Each treatment in one replication contained 5 plant samples, for a total of 60 plants in this study, with weekly watering and fertilization. The findings show that an IoT-based automatic water supply and drip fertilization system can precisely regulate the distribution of water and fertilizer to red lettuce plants, thereby improving water efficiency, farmer energy efficiency, and environmental friendliness.
EN
The agricultural sector is currently witnessing the use of Internet of Things (IoT) to drive significant innovations across key interests, particularly irrigation. A sprinkler designed with an Arduino controller was developed in this study. The device is among the fastest growing agricultural irrigation systems. The plant studied is Brassica Chinensis, because this vegetable is one of the most commonly consumed vegetables by Indonesian people. However, emphasis is also placed on plant quality as an important consideration, not only on the device’s operational performance. The purpose of this research was to compare the plant quality, including the dissolved solids, chlorophyll, carotenoid, and vitamin C using manual and Arduino-based sprinkler. As consequence, three treatment methods were employed, termed: the use of manual sprinkle, e.g. P0, and Arduino-based IoT sprinkler, described as P1 and P2. Under these conditions, the chlorophyll quality was comparable to the results obtained using the manual application. P1 is a situation where the sprinkler is manually set by the farmer via the app. Meanwhile, P2 uses a sprinkler which is automatically regulated by the system. Under these conditions, the chlorophyll quality generated with the IoT sprinkler was comparable to the results obtained using the manual application.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.