Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigated the efficiency of copper and manganese adsorption by bacterial cellulose (BC) produced from Komagataeibacter intermedius BE073. BC was collected from production processes in a village in Nakhon Nayok province. BC had high moisture content of 91.15±3.68%, an average water absorption index (WAI) of 5.30±0.362, an average tensile strength of 99.1 ±6.18 MPa, average elongation at break of 6.41±0.67%, and an average Young modulus of 1445±177 MPa. Structural analysis of the BC material shows that it is a cellulose powder with a main group. Measurements show that the Mn content in BC rapidly decreased after soaking in solution, and that the highest Cu absorption efficiency of BC during a 120 minute period was 15469 mg kg-1. The results of this study show that BC may be successfully used to absorb various heavy metal residues from leachate, particularly Cu solutions. BC cannot absorb Mn from solution, so it cannot be used to absorb Mn from leachate. However, studies have shown that BC can release Mn into solution. Therefore, BC may be effective for use in agriculture, as Mn is a micronutrient for plants.
EN
This research aimed to develop and characterize polyvinyl alcohol (PVA)/bacterial cellulose (BC) composite for environmentally friendly films. BC was produced from a high-performance strain of Komagataeibacter intermedius BE073 isolated from a bio-extract sample. The film was prepared by varying the ratio between PVA and BC content, and treatments consisted of 100:0, 90:10, 80:20, 70:30, and 60:40. The characterization of PVA/BC film in terms of mechanical properties, film structure, water and oxygen resistances, thermal stability, and biodegradation were investigated. Results revealed that PVA/BC film had properties superior to that of pure PVA film, and it has a high biodegradation rate. The mechanical properties changed little with the addition of BC, but the tensile strength and Young’s modulus increased with the addition of BC. Water absorption and moisture content were also reduced. However, adding BC improved oxygen transmission rates and thermal stability properties. Most importantly, the addition of BC helped the film to degrade. The higher the amount added, the higher the natural decomposition rate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.