Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono aktualny stan wiedzy w zakresie problematyki wychwytu oraz zagospodarowania dwutlenku węgla. W pierwszej części skupiono się na przeglądzie dostępnych metod wychwytu CO2 oraz zwrócono uwagę na metody, które mają największe szanse na komercyjne wdrożenie w przemyśle cementowym, rafineryjnym, hutniczym, papierniczym oraz energetyce. Wykonano obliczenia modelowe w celu określenia wpływu instalacji wychwytu CO2 na wskaźniki pracy bloku na przykładzie bloku gazowo-parowego klasy 600 MW. Analiza integracji wychwytu CO2 z blokiem gazowo-parowym miała na celu określenie energochłonności procesu i wpływu na wskaźniki energetyczne bloku. Uzyskane wyniki obliczeń porównano z wynikami podobnych analiz (różnych bloków energetycznych zasilanych paliwami kopalnymi) dostępnymi w publikacjach naukowych. Dla analizowanego modelu bloku gazowo-parowego zintegrowanego z wychwytem CO2 dokonano próby oszacowania nakładów inwestycyjnych na budowę instalacji CCS (bez uwzględnienia kosztów transportu CO2 oraz kosztów zmiennych). W drugiej części artykułu przedstawiono kwestię zagospodarowania CO2. W tym kontekście rozpatrywane były dwie opcje, tj. zatłaczanie pod ziemię (geologiczne składowanie) oraz utylizacja poprzez konwersję w inny wartościowy produkt. W końcowej części artykułu skupiono się na najistotniejszych barierach dla rozwoju wychwytu i utylizacji CO2, która wynika przede wszystkim z braku precyzyjnych regulacji prawnych, bardzo wysokich kosztów ekonomicznych oraz ograniczeń o charakterze technicznym.
EN
The article presents the state of the art in carbon capture and management. The first part of the article includes a review of available carbon capture technologies and highlights methods that have the greatest chance of commercial application in cement, refining, iron and steel, paper and power industries. The article presents model calculations made to assess the impact of the carbon capture facility on performance indicators of power units using the example of a 600 MW CCGT unit. The integration of CO2 capture with the CCGT unit is analyzed to determine energy consumption of the process and its impact on energy indicators of the unit. The calculation results are compared with the results of similar analysis (of different fossil fuel-fired power units) available in scientific publications. An attempt is made to estimate capital expenditures for construction of the CCS facility (excluding CO2 transport costs and variable costs) for the analyzed model of the CCGT unit integrated with CO2 capture. The second part of the article presents issues related to carbon management. In this context, two options are considered, i.e., underground injection (geological storage) and conversion into another valuable product. The final part of the article focuses on the most significant barriers to development of carbon capture and utilization, resulting mainly from the lack of precise legal regulations, very high economic costs and technical constraints.
PL
W artykule opisano proces modelowania numerycznego kogeneracyjnego układu wodorowego zasilanego głównie energią elektryczną pochodzącą z odnawialnych źródeł energii (OZE). Zamodelowany w środowisku informatycznym układ kogeneracyjny w przyszłości – jako instalacja demonstracyjna – będzie miał za zadanie zasilać w ciepło wyodrębnioną grupę odbiorców oraz produkować energię elektryczną sprzedawaną do sieci elektroenergetycznej. Proces modelowania numerycznego obejmuje budowę, integrację i optymalizację pracy poszczególnych komponentów technologicznych, takich jak: elektrolizer, magazyn wodoru, silnik kogeneracyjny, sezonowy magazyn ciepła oraz kocioł gazowy. Do przeprowadzenia procesu modelowania numerycznego wykorzystywane jest dedykowane oprogramowanie TRNSYS. W artykule przedstawiono pierwszy etap prac badawczo-rozwojowych, które obecnie są realizowane przez Energopomiar w ramach przedsięwzięcia współfinansowanego przez Narodowe Centrum Badań i Rozwoju pod nazwą „Elektrociepłownia w lokalnym systemie energetycznym”.
EN
The paper describes the process of numerical modelling of a hydrogen-based cogeneration system powered mainly by electricity from renewable energy sources (RES). In the future, the cogeneration system modelled in the IT environment, as a demonstration installation, will supply heat to the selected group of consumers and produce electricity to be sold to the electric power grid. The numerical modelling comprises the construction, integration and optimization of operation of particular process components including an electrolyzer, hydrogen storage, an internal combustion gas engine, pit thermal energy storage and a natural gas boiler. The numerical modelling process uses the dedicated TRNSYS software. The paper presents the first phase of research and development activities currently carried out by „Energopomiar" Sp. z o.o. as part of the project, 'A combined heat and power plant in the local energy system', co-financed by the National Centre for Research and Development.
PL
W artykule dokonano przeglądu rozwiązań i możliwości zastosowania technologii ORC (ang. Organic Rankine Cycle) dla skojarzonej produkcji energii elektrycznej i ciepła. Technologia ORC opiera się na takich samych zasadach działania jak w przypadku klasycznego obiegu Clausiusa Rankine’a, tzn. zachodzą w nim takie same przemiany termodynamiczne, różnica polega jedynie na zastosowaniu czynnika niskowrzącego. W artykule skupiono się głównie na gotowych i sprawdzonych rozwiązaniach dostawców tego typu układów. Dokonano porównania konfiguracji dla układów tego typu, jak również przedstawiono możliwość ich zastosowania w celu optymalizacji wytwarzania energii elektrycznej i ciepła. Główna zaleta technologii ORC to możliwość zastosowania jej w różnych gałęziach gospodarki. Dostępna na rynku komercyjna technologia opiera się głównie na układach ORC zasilanych kotłami na biomasę. Dla tej technologii dokonano syntetycznego zestawienia gotowych rozwiązań, w tym typoszeregów dostępnych mocy elektrycznych i cieplnych w układzie skojarzonym oraz dodatkowo mocy elektrycznej i sprawności elektrycznej w układzie kondensacyjnym. W artykule poruszono także aspekt ekonomiczny związany z nakładami inwestycyjnymi na tego typu rozwiązania, dla których wykreślono charakterystyki kosztowe.
EN
The article presents an overview of solutions and applicability of the ORC (Organic Rankine Cycle) technology in combined heat and power generation. The ORC technology is based on the same principles of operation as in the classic Clausius Rankine cycle, i.e.: the same thermodynamic transformations occur. The only difference is the application of a low-boiling agent. The article mainly focuses on the ready and proven solutions used by suppliers of systems like that. A comparison is made of configurations for this type of systems and, moreover, their possible use to optimize electric power and heat generation is presented. The basic advantage of the ORC technology is possibility of its application in various sectors of the economy. The commercial technology offered on the market is generally based on ORC systems supplied by biomass-fired boilers. The article provides a synthetic list of ready solutions for this technology, including types of available electric and thermal power in combined systems and, additionally, of electric power and electric efficiency in condensing systems. Besides, the article mentions an economic aspect related to capital expenditures for the presented solutions and provides the corresponding cost estimates.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.