New morphic characterizations in the form of a noted Chomsky-Schützenberger theorem are established for the classes of regular languages, of context-free languages and of languages accepted by chemical reaction automata. Our results include the following: (i) Each λ-free regular language R can be expressed as R = h(Tk ∩ FR) for some 2-star language FR, an extended 2-star language Tk and a weak coding h. (ii) Each λ-free context-free language L can be expressed as L = h(Dn ∩ FL) for some 2-local language FL and a projection h. (iii) A language L is accepted by a chemical reaction automaton iff there exist a 2-local language FL and a weak coding h such that L = h(Bn ∩ FL), where Dn and Bn are a Dyck set and a partially balanced language defined over the n-letter alphabet, respectively. These characterizations improve or shed new light on the previous results.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper concerns new characterizations of language classes in the Chomsky hierarchy in terms of a new type of computing device called FAMM (Finite Automaton with Multiset Memory) in which a multiset of symbol objects is available for the storage of working space. Unlike the stack or the tape for a storage, the multiset might seem to be less powerful in computing task, due to the lack of positional (structural) information of stored data. We introduce the class of FAMMs of degree d (for non-negative integer d) in general form, and investigate the computing powers of some subclasses of those FAMMs. We show that the classes of languages accepted by FAMMs of degree 0, by FAMMs of degree 1, by exponentially-boundedFAMMs of degree 2, and by FAMMs of degree 2 are exactly the four classes of languages REG, CF, CS and RE in the Chomsky hierarchy, respectively. Thus, this unified view from multiset-based computing provides new insight into the computational aspects of the Chomsky hierarchy.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Hairpin completion and its variant called bounded hairpin completion are operations on formal languages, inspired by a hairpin formation in molecular biology. Another variant called hairpin lengthening has been recently introduced, and the related closure properties and algorithmic problems concerning several families of languages have been studied. In this paper, we introduce a new operation of this kind, called hairpin incompletion which is not only an extension of bounded hairpin completion, but also a restricted (bounded) variant of hairpin lengthening. Further, the hairpin incompletion operation provides a formal language theoretic framework that models a bio-molecular technique nowadays known asWhiplash PCR. We study the closure properties of language families under both the operation and its iterated version. We show that a family of languages closed under intersection with regular sets, concatenation with regular sets, and finite union is closed under one-sided iterated hairpin incompletion, and that a family of languages containing all linear languages and closed under circular permutation, left derivative and substitution is also closed under iterated hairpin incompletion.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.