The main goal of the studies on epitaxial regrowth process of InP on patterned substrates is to gain knowledge about growth rates and interface quality on various areas to improve the fabrication technology for future applications. Prepared samples were measured at every step of the process by scanning electron microscope (SEM), optical microscope with dark field and phase contrast modes, atomic force microscope (AFM) and also using optical profilometer WLI (White Light Interferometer). Fabrication steps were divided into three main groups. First was the epitaxial growth of 5 µm thick InP layer. Next was patterning, which was made by applying a mask film on the epilayer. Shapes of the mesas after wet chemical etching with photoresist as a mask as well as the shapes of mesas slopes were irregular on the whole substrate area. These problems were solved by the use of silicon nitride mask. The mesas shapes and their slopes became then regular, independently of etching depth. Second fabrication step was etching of selected area. Couple of solutions were examined, but in details HCl:H3PO4 mixture in various proportions, which gave the best results in mesas shapes and orientations relative to the substrate. After that, the etching mask material was removed from the epilayer using a buffered hydrofluoric acid (BHF). The last step was epitaxial regrowth. To see how the epitaxial growth process was performed on different areas of patterned substrate it was suggested using a “sandwich”, which consisted of 50 layers of indium phosphide and indium gallium arsenide. This idea helped to understand the phenomena occurring during the epitaxial growth on that kind of substrate. The highest growth rate occurred on the top of the mesas and the lowest on their slopes. Described experiments are introduction to the studies on epitaxial growth of buried heterostructure (BH).
Kwantowe lasery kaskadowe są jednymi z najbardziej wyrafinowanych przyrządów półprzewodnikowych. Znajdują zastosowanie m. in. w spektroskopii fotoakustycznej, diagnostyce medycznej czy detekcji śladowych ilości niebezpiecznych gazów. Niektóre z tych aplikacji wymagają pracy ciągłej lasera, w temperaturze pokojowej. Aby zapewnić odpowiednie warunki pracy, niezbędne jest zastosowanie wydajnej techniki odprowadzania ciepła z obszaru rdzenia lasera. Jedną z możliwości jest osadzenie wysokorezystywnych warstw InP:Fe. W niniejszej pracy zaprezentowano etapy opracowywania technologii InP:Fe do zastosowań w kwantowych laserach kaskadowych. Warstwy były osadzone techniką LP-MOVPE na stanowisku firmy Aixtron. Jako źródeł materiałów grup III oraz V użyto odpowiednio: TMIn oraz PH3 (100%), natomiast atomy żelaza pozyskano z CP2 Fe. Przeprowadzono diagnostykę otrzymanych struktur za pomocą takich technik jak HRXRD, AFM czy pomiary elektryczne I-V.
EN
Quantum cascade lasers are one of the most sophisticated semiconductor devices. Their main applications are photoacoustic spectroscopy, medical diagnostics and harmful gas sensing. Some of them need continuous wavelength operation mode at room temperature. In order to assure proper working conditions it is necessary to apply efficient technics of heat dissipation from the laser core. One of the possibilities is to use highly-resistivity InP:Fe layers. In the present work there is elaboration of InP:Fe technology presented. Layers were deposited using LP-MOVPE technique at the AIXTRON system. There were TMIn, PH3 and Cp2Fe materials used as a group III, V and dopant sources. Test structures were investigated by the means of HRXRD, AFM and I-V measurement techniques.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.