Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Rubber is widely used in tires, mechanical parts, and user goods where elasticity is necessary. Some essential features persist unsolved, primarily if they function in excessive mechanical properties. It is required to study elastomeric Rubber's performance, which is operational in high-level dynamic pressure and high tensile strength. These elastomeric aims to increase stress breaking and preserve highly pressurised tensile strength. Design/methodology/approach: The effects of carbon black polymer matrix on the tensile feature of different Rubber have been numerically investigated in this research. Rubber's material characteristics properties were measured using three different percentages (80%, 90%and 100%) of carbon black filler parts per Hundreds Rubber (pphr). Findings: This study found that the tensile strength and elongation are strengthened as the carbon black filler proportion increases by 30%. Practical implications: This research study experimental tests for Rubber within four hyperelastic models: Ogden's Model, Mooney-Rivlin Model, Neo Hooke Model, Arruda- Boyce Model obtain the parameters for the simulation of the material response using the finite element method (FEM) for comparison purposes. These four models have been extensively used in research within Rubber. The hyperelastic models have been utilised to predict the tensile test curves—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model. Numerical Ogden model results have shown that the relative fitness error was the case with large strains are from 1% to 2.04%. Originality/value: In contrast, other models estimate parameters with fitting errors from 2.3% to 49.45%. The four hyperelastic models were tensile test simulations conducted to verify the efficacy of the tensile test. The results show that experimental data for the uniaxial test hyperelastic behaviour can be regenerated effectively as experiments. Ultimately, it was found that Ogden's Model demonstrates better alignment with the test data than other models.
EN
Purpose: The residual stresses in different welding methods are fundemental problems to consider. Friction stir welding is one of a solid state joining process, it is economical in that it permits joining together different materials, the specimens in this method (FSW) have excellent properties of mechanical as proven by tensile, flextural and fatigue tests, also it is environmentally friendly process minimizes consumption of energy and generate no gasses or smoke. In friction stir welding , there are two kinds of generated residual stresses: tensile stress and compressive stress. So, this study measuring the residual stresses by using a new method for measuring residual stresses depends on tensile testing and stress concentration factor, this method is a simple, fast and low cost, also it is not need special device. Design/methodology/approach: In previous studies, several techniques were used to predict the value of residual stress and its location, such as destructive, semi-destructive, and non-destructive methods. In this study, a simple, new, and inexpensive way was used based on the tensile test and stress concentration of the friction stir welding (FSW). Findings: By comparing the results obtained with the previous studies using the X-ray method, with the current research, it was found that the results are good in detecting the location and value of the residual stress of friction stir welding. The value of discrepancy of the residual stress in the results between those obtained by the previous method and the current method was about 3 MPa. Research limitations/implications: There are many rotational and linear feeding speeds used in this type of welding. This research used two plates from 6061 AA with 3mm thickness, 100 mm width, and 200 mm length. The rotational speed used in friction stir welding was 1400 rpm, and the feeding speed was 40 mm/min. Practical implications: The residual stress obtained with the new method is 6.2 MPa, and this result approximates other known methods such as the X-ray method in previus studies. Originality/value: Using a new simple method for measuring residual stresses of friction stir welding depends on stress concentration factor and tensile testing. This method is fast and low cost , also it is not need specialized device, compared to other methods such as x-ray or hole drilling methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.