Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Attention to greenhouse gases is carried out by reducing CO2 emissions. Emission reduction is achieved using mixed fuels, primarily derived from plant oils. The pertasol-diethyl ether and tamanu oil (PDETO) fuel mixture were tested using a spark ignition engine. The research objective is to obtain fuel specifications and test engine performance using the resulting fuel. Mixed fuels were created from various compositions with codes ranging from BE0 to BE10. Performance testing was conducted using a 110-cc gasoline engine with specific specifications using mixed fuels and compared to commercial gasoline. The research results indicate that engine torque, power, and MeP are higher when using mixed fuels BE0 – BE10 than retail gasoline. The maximum torque that can be achieved is 8.51 NM at 5000 rpm using BE10 mixed fuel, higher than the maximum torque of commercial gasoline, which is 6.81 NM. The highest full power is generated by BE10 fuel, at 7.75 HP at an engine speed of 7000 rpm. The minimum capacity is produced by BE0 fuel, with a power of 6.78 HP at an engine speed of 7000 rpm. Optimal SFC occurs in the BE0 fuel mixture at 7000 rpm engine speed at 0.25 kg/Hp·h. BE10 thermal efficiency reached 31.8%, which is better than commercial gasoline.
EN
The fertilizer industry laboratory produces urea and ammonia nitrogen waste that can harm living things in the surrounding water bodies. Urea, nitrogen, and ammonia can be reduced by adsorption using activated carbon. This research reduced urea nitrogen and ammonia through activated carbon adsorption with a batch and continuous system. Percentage indicator of urea and ammonia nitrogen removal through Ammonia Nitrogen (NH3-N) and Chemical Oxygen Demand (COD) NH3-N and COD analysis was determined. This study aimed to obtain: 1) the percentage of NH3-N and COD reduction in stem batch; 2) the percentage of NH3-N and COD reduction in the continuous system; 3) the Freundlich and Langmuir isotherm adsorption equation against NH3-N wastewater. They are testing the adsorption power of activated carbon in a batch system using variable levels of activated carbon: 40 g/L, 55 g/L, 70 g/L, 85 g/L, and 100 g/L and testing the adsorption power of activated carbon in a continuous system using the variable frequency of wastewater in contact with activated carbon filter cartridges, namely 2, 3, 4, 5, and 6 times. The results showed: 1) in the batch system NH3-N reduction of 98.26–98.82% and COD reduction of 92.53–97.05%; 2) in continuous system reduction of NH3-N of 86.05–88.07% and COD reduction of 93.91–97.05%; 3) Freundlich isotherm adsorption equation yields constant R2 0.9464, n 0.4482, KF 0.0616 mg/g; while Langmuir’s isotherm adsorption equation yields constant R2 0.8684, b -0.1046 L/mg, and qm 7.9872 mg/g.
EN
Fe and Mn metal ions in acid mine drainage can contaminate water bodies and soil, endangering human health. In this study, the adsorption of Fe and Mn in acid mine drainage was carried out using manganese greensand. This study aimed to obtain 1) the adsorption model of Fe and Mn isotherms using manganese greensand and 2) the surface morphology of manganese greensand before and after the adsorption process. This study used laboratory-scale experimental methods with variable concentrations of Fe (325, 400, 475, 550, 625 mg/L) and Mn (432, 507, 582, 657, 732 mg/L). The Freundlich and Langmuir adsorption isotherm models were used to determine the adsorption capacity of Fe and Mn by manganese greensand. Test for Fe and Mn content using the AAS method and test the surface morphology and content of manganese greensand using SEM-EDX. The results showed that: (1) the Freundlich equation test yielded for Fe: in a constant R2 of 0.9862, n = 0.6912, KB = 0.2180 mg/g, while the Langmuir equation test yielded in a constant R2 of 0.8836, b = 0.0051 L/mg, qm = 169.4915 mg/g; the Freundlich equation test yielded for Mn: in a constant R2 of 0.9923, n = 0.8651, KB = 1.0445 mg/g, while the Langmuir equation test yielded in a constant R2 of 0.6615, b = 0.0010 L/mg, qm = 500 mg/g; (2) The surface morphology of manganese greensand before contact with acid mine drainage contains needle-shaped particles of uniform size with a hexagonal structure, whereas, after contact with acid mine drainage, the particles are clumped like cotton and form needles with varying sizes.
EN
The fast-growing batik industry in Indonesia raises the problem of the waste containing chromium. One method to remove chromium is by the adsorption process using activated carbon. Activated carbon can be made from coal. This commodity is a mining mineral the availability of which is still abundant in Indonesia. This study aimed to obtain: 1) the best concentration of activator and activation temperature in the manufacture of activated carbon; 2) characteristics of activated carbon (moisture content, volatile matter content, ash content, fixed carbon content, iodine number, specific surface area, pore-volume, pore surface area, pore radius, and SEM photos); 3) % activated carbon removal for chromium and maximum adsorption capacity for chromium; 4) Freundlich and Langmuir isotherm adsorption equation of activated carbon to chromium. The manufacture of activated carbon was carried out by a carbonization process followed by a chemical and physical activation processes. The chemical activator was ammonium phosphate with doses of 74.5 g/L, 149 g/L, 223.5 g/L, and 298 g/L. Meanwhile, physical activation was carried out at 848 K, 948 K, 1048 K, and 1148 K. The next step was to test the adsorption capacity of activated carbon on artificial batik waste containing chromium. The results showed that: 1) activator concentration did not significantly affect the characteristics of activated carbon. Meanwhile, the optimal activation temperature is at a temperature of 1048 K and 1148 K, which can produce the activated carbon that meets the requirements of activated carbon of the Indonesian National Standard 06-3730-1995 with the following contents: air content 0.16–0.81%; volatile matter 14.62–19.31%; ash 6.48–9.97%; fixed carbon 70.60–75.79%; iodine number 1243.13–1258.65%; specific surface area 31.930 m2/g; activated carbon pore volume 0.011 cc/g; pore surface area 8.905 m2/g; activated carbon pore radius 30.614; 3) the proportion of activated carbon removal for chromium is 37–53% and the maximum adsorption capacity for chromium is 52 mg/g; 4) the Freundlich equation test resulted in a constant R2 of 0.5126, n 2.4870, KF 8.8818 mg/g, while the Langmuir equation test resulted in a constant R2 of 0.8897, b -0.0075 L/mg, qm -90.0901 mg/g.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.