Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W niniejszym artykule dokonano syntezy dorobku ośrodka wrocławskiego w meteorologii i klimatologii polarnej, wskazano też na momenty przełomowe ale też kryzysowe w tej 60-letniej historii. Efektem ostatnich lat jest aktywność badawcza, która ma cechy innowacji i zastosowania meteorologii/klimatologii na pograniczu dziedzin (glacjologia, geomorfologia, biologia, chemia atmosfery). Cechą charakterystyczną badań wrocławskich geografów nadal pozostaje duże zaangażowanie w trudnych i nowatorskich tematach. Wyniki badań mają często charakter interdyscyplinarny. Spoglądając na dorobek wrocławski i innych ośrodków naukowych powinniśmy mieć świadomość, że dopiero nowoczesność stosowanych metod pomiarowych i narzędzi analiz nada polskiej klimatologii polarnej odpowiednią wartość naukową w wymiarze europejskim.
EN
This paper summarizes the University of Wroclaw achievements in polar meteorology and climatology. An attempt was made to identify milestones but also critical points in the 60-year history. Resumed after years of absence activity seems to be innovative with applications in many scientific branches (glaciology, geomorphology, biology, chemistry of atmosphere). A feature of geographers from Wroclaw still is a strong commitment to challenging and innovative topics, with results which are often interdisciplinary. Looking at the achievements of Wroclaw and other polish research centers should be aware that only modern methods of measurement and analysis tools will give the Polish polar climatology adequate scientific value of a European dimension.
2
Content available Termiczne pory roku w Hornsundzie (SW Spitsbergen)
EN
In the studies on climate and its changes in the polar regions it is essential to determine climatic seasons which can be based on thermal, circular and phenological criteria but also according to different types of weather. The aim of this research is to determine thermal seasons, to characterize their structure and general regularities, which may make the more detailed environmental monitoring of these areas possible. According to many authors, a climatic characterization of a given area should be presented through defining its seasonal structure. This article attempts to find natural thermal periods in the polar climate, which differ from the conventional, fixed monthly or quarterly periods: spring III-V, summer VI-VIII, autumn IX-XI, winter XII-II; often accepted by many scientists in order to make the characterization of the course of selected meteorological elements easier. The analysis of the seasonal structure of the climate of Hornsund is based on the data from the period of 1990-1999. The indices that characterize the initial and final dates, the overall duration of the thermal seasons, and estimation of the seasons? changeability in thermal terms have been taken into consideration. Calendar boundaries have been set according to the method proposed by Kosiba (1958), in which the date that begins the period of the domination of days with the daily average air temperature (Ti) typical for a given season is accepted as the season?s boundary. As the quite significant changeability of the daily average air temperature complicates the choice of initial and final dates of seasons, additional criteria are used: the number of days proper for thermal season (w), days warmer than w?days, days colder than w-days, the average air temperature and other. This study provides a division into four seasons according to Baranowski?s criteria (1986) accepted on the basis of an analysis of the annual course of air temperature in Hornsund, the accepted thermal criteria are as follows: spring -2.5°C <= Ti <= 2.5°C, summer Ti >= 2.5°C, autumn -2,5°C <= Ti <= 2.5°C, winter Ti <= -2,5°C. The characteristics of a vegetative period are also defined. Its duration in the polar regions is difficult to estimate. If we accept the most commonly used criterion of the stabilization of the daily average air temperature over +5°C, we will face the situation in which the vegetative period in the polar regions is either very short or does not occur at all. Phenological observations of Sorkappland - S Spitsbergen (Dubiel, 1988) made it possible to estimate a natural thermal threshold 0?C which begins the vegetative period. The development of most plants and their first flower buds occurs in average air temperature of approximately 0?C. Blooming and producing seeds, on the other hand, occur when the air temperature exceeds 2.5°C. Seasons (fig. 17), determined on the basis of daily average air temperatures, characterize and emphasize the changeability of thermal conditions and the specifics of the polar climate very well, what results in the conclusions enumerated below: - in the researched decade the initial and final dates and the overall duration of the thermal seasons are characterized by great changeability, - the most stable, with regard to the initial date, are spring and summer, - the most changeable, with regard to duration, are autumn and summer, - the most thermally stable season is summer. The least thermally stable season is autumn, - transitional seasons have a tendency to prolong: mainly autumn (the effect is that winter becomes shorter) and to a lesser extent spring. Winter and summer shorten, - the analysis of the line of this trend reveals that summer gets slightly colder. Spring and winter do not show any significant changes, - the most visible tendency is a downward tendency of autumn temperatures - the effect of the prolonged duration towards winter, - a vegetative period shows a tendency to begin later and to finish slightly earlier. The final date, however, does not reveal any significant tendency for changes.
PL
Czynniki meteorologiczne, w szczególności stan warstwy granicznej odgrywają kluczową rolę dla jakości powietrza. W pracy zwrócono uwagę na możliwości, jakie daje sodarowy sondaż atmosfery w ciągłym monitoringu ABL i tym samym w kontroli jakości powietrza. Analizę materiału badawczego, zawierającego: podstawowe parametry meteorologiczne oraz dane sodarowe (Zakład Meteorologii i Klimatologii Uniwersytetu Wrocławskiego); średnie półgodzinne wartości stężenia CO, NOx, SO2, O3 (Stacja Monitoringu Atmosfery Politechniki Wrocławskiej) przeprowadzono dla 5 charakterystycznych epizodów, wyłonionych z okresu I 1996 - XII 1998. Zbudowane modele regresji złożonej potwierdziły istnienie silnej zależności stężenia poszczególnych polutantów od czynników meteorologicznych. Współczynnik determinacji (r2) dla wybranych przypadków wynosił powyżej 0,7 (maksymalnie 0,94). Dyspersja zanieczyszczeń uzależniona była w szczególności od kierunku i prędkości wiatru, wysokości i czasu trwania inwersji (niekorzystnie są sytuacje długo utrzymującej się inwersji przygruntowej lub niskiej inwersji wzniesionej (wysokość warstwy mieszania h < 80 m n.p.g.), z silnie ograniczonym dopływem promieniowania słonecznego i mgłą. Często takie warunki pojawiają się w chłodnej porze roku przy cyrkulacji antycyklonalnej). Wzrost prędkości wiatru powoduje obniżenie koncentracji zanieczyszczeń pierwotnych CO, NO, SO2 (efekt "wymiatania" najsilniej uwidacznia się po okresie ciszy i słabego wiatru) oraz podwyższenie stężenia O3 (transport z terenów pozamiejskich, a także z wyższych warstw troposfery w wyniku silnie rozwiniętej turbulencji). Analiza danych sodarowych pozwoliła na wyróżnienie okresów prowadzących do wzrostu koncentracji zanieczyszczeń: 1. "przełomu porannego" oraz 2. połączenia się inwersji wzniesionej z przygruntową.
EN
A structure of a boundary layer (ABL) and meteorological parameters have a key meaning for air quality. This paper shows possibilities of acoustic sounder in continuous monitoring of ABL. The analyses of meteorological conditions on air pollutant concentrations were carried out for 5 characteristic episodes for the period January 1996 - December 1998. The following parameters were used in this work: I) meteorological data (such as solar radiation, air temperature, wind velocity, etc. and sodar data) from Dpt. of Meteorology and Climatology; 2) ambient air pollutant concentration data from Air Pollution Monitoring Station - University of Technology, Wrocław. The complex regression model built in this work showed the strong relationships between the concentrations of particular gases and meteorological factors as well as another chemical compounds participating in air pollutant transformations. The determination coefficient for the selected cases can be assumed on the level higher than 0,7 (max. 0,94). The key meteorological factors governing the dispersal of pollutants were wind speed and direction, presence and height any inversion (the situations with the inversion layer persisting for a long time, with relatively small thickness (h<80 m), in anticyclone condition were particularly disadvantageous) and the convection growth. The increasing windspeed effect on decreasing CO and NO concentration. Especially there were great impacts after longer period of calm wind. In opposite, the concentrations of O3 obtained greater values, when windspeed is higher. There were same periods in ABL evolutions, which were connected with suddenly "peak" of pollutant concentration: I) the "morning transition" and 2) time, when capping layer (E) connects with grand-base one.
EN
The fundamental characteristic is based upon the results of the studies on mass balance of Arctic and Subpolar Glaciers from 1965 to 1995. The analisys of data shows that both Higharctic glaciers - Devon Ice Cap (Canada) and Austre Broegger (Spitsbergen) have negative mass balance during the whole period of research, ranging from minus 2000 mm w.e. (Devon) to nearly minus 9000 mm w.e. (A. Broegger). The dependence on climatic influence of the oceans is the main feature of the Subarctic Glaciers. Wolverine Glacier (the coast of Alaska) shows the positive mass balance during the best part of the studied period. However, in the last six years the mass balance has the negative value. Taking into account the global values of the mass balance in many years research; it can be said that these values are the same as 30 years ago. Gulkana Glacier (Alaska) which has a continental location has had moderately negative values of mass balance for 30 years. Similarly has Scandinavian Stor Glacier (Sweden), although for a few last years it has had positive values of the mass balance. Only one coastal Enga Glacier (Norway) has had positive mass balance. Its increases in mass is very significant, reaching 22 000 mm w.e. in 25-years period 1970-1995.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.