This paper presents optimisation of a measuring probe path in inspecting the prismatic parts on a CMM. The optimisation model is based on: (i) the mathematical model that establishes an initial collision-free path presented by a set of points, and (ii) the solution of Travelling Salesman Problem (TSP) obtained with Ant Colony Optimisation (ACO). In order to solve TSP, an ACO algorithm that aims to find the shortest path of ant colony movement (i.e. the optimised path) is applied. Then, the optimised path is compared with the measuring path obtained with online programming on CMM ZEISS UMM500 and with the measuring path obtained in the CMM inspection module of Pro/ENGINEER® software. The results of comparing the optimised path with the other two generated paths show that the optimised path is at least 20% shorter than the path obtained by on-line programming on CMM ZEISS UMM500, and at least 10% shorter than the path obtained by using the CMM module in Pro/ENGINEER®.
High precise measurement techniques and surface structure analysis are required in advanced fields of interchangeable manufacturing and precision engineering. This study presents the characterization of the surface roughness of the machined milling cutters by experimental precision measurements and the image processing tool. The data obtained are compared to assess the surface characterization parameters and computational data in terms of precision, accuracy, sensitivity, repeatability and resolution. In the experimental measurement phase, the roughness measurements and surface topography characterization were performed in the nanotechnology laboratory using the stylus profilometry and digital microscopy. The computational phase was performed using an image processing toolbox with precise evaluation of the roughness for the machined metal surfaces of the end mill cutting tool. The surface parameter database is established exhibiting an advantage over the traditional method. This study reveals a comparison methodology of the end mill surface parameters using both stylus readings and image processing software for widely used end mill cutting tools that have considerable effect on characterization of sensitive manufacturing surface of millings.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.