This paper considers distributed systems, defined as a collection of components interacting through interfaces. Components, interfaces and distributed systems are modeled as Petri nets. It is well known that the unfolding of such a distributed system factorises, in the sense that it can be expressed as the composition of unfoldings of its components. This factorised form of the unfolding generally provides a more compact representation of the system runs, because each component does not need to represent the possible choices (conflicts) appearing in the other components. Moreover, the unfolding factorisation makes it possible to analyse the system by parts. The paper focuses on the derivation of a finite and complete prefix (FCP) in the unfolding of a distributed system. Specifically, one would like to directly obtain such a FCP in factorised form, without computing first a FCP of the global distributed system and then factorising it. The construction of such a “modular FCP” is based on deriving summaries of component behaviours w.r.t. their interfaces, that are then communicated to the neighbouring components. The latter combine these summaries with their local behaviours, and prepare interface summaries for the next components. This globally takes the form of a message passing algorithm, where the global system is never considered.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A combined framework for the resolution of encoding conflicts in STG unfoldings is presented, which extends previouswork by incorporating concurrency reduction in addition to signal insertion. Furthermore, a novel validity condition is proposed to justify these transformations. The method has been implemented in the CONFRES tool and applied to a number of case studies. The experimental results show that the combined framework enlarges the design space and allows for better exploration of the speed/area tradeoff.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.