Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, optical neural networks have attracted widespread attention, due to their advantages of high speed, high parallelism, high bandwidth, and low power consumption. Photonic unitary neural network is a kind of neural networks that utilize the principles of unitary matrices and photonics to perform computations. In this paper, we design a photonic unitary neural network based on Mach–Zehnder interferometer arrays. The results show that the network has a good performance on both triangular and circular binary classification datasets, where most of the data points are correctly classified. The accuracies achieve 97% and 95% for triangular and circular datasets, with the loss function values of 0.023 and 0.046, respectively.
EN
In recent years, with the expansion of information, artificial intelligence technology has been developed and used in various fields. Among them, optical neural network provides a new type of special neural network accelerator chip solution, which has the advantages of high speed, high bandwidth, and low power consumption. In this paper, we construct an optical neural network based on Mach–Zehnder interferometer. The experimental results on the image classification of MNIST handwritten digitals show that the optical neural network has high accuracy, fast convergence and good scalability.
EN
Optical neural network (ONN) has been regarded as one of the most prospective techniques in the future, due to its high-speed and low power cost. However, the realization of optical convolutional neural network (CNN) in non-ideal cases still remains a big challenge. In this paper, we propose an optical convolutional networks system for classification problems by applying general matrix multiply (GEMM) technology. The results show that under the influence of noise, this system still has good performance with low TOP-1 and TOP-5 error rates of 44.26% and 14.51% for ImageNet. We also propose a quantization model of CNN. The noise quantization model reaches a sufficient prediction accuracy of about 96% for MNIST handwritten dataset.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.