Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono zmianę profilu rynkowej ceny energii elektrycznej w Polsce do jakiej doszło w latach 2019-2022. Opisano podstawowe mechanizmy mające wpływ na wytwarzanie, sprzedaż, dystrybucję, bilansowanie i bezpieczeństwo na krajowym rynku energii elektrycznej. Wyjaśniono główne powody zmiany profilu rynkowej ceny energii elektrycznej w okresie wzmożonej ekspansji odnawialnych źródeł energii (OZE).
EN
The paper presents the change in the profile of the market price of electricity in Poland that occurred in 2019-2022. The basic mechanisms affecting generation, sale, distribution, balancing and security on the domestic electricity market are described. The main reasons for the change in the profile of the market price of electricityin the period of increased expansion of renewable energy sources (RES) have been explained.
EN
This paper presents the experimental results of a Combined Heat and Power (CHP) prototype based on a SI V-twin internal combustion engine driving a synchronous generator. The paper presents the criteria that were used to select the combustion engine and the electrical generator for the prototype. The internal combustion engine has been adapted to be fuelled by natural gas or LPG, with the possibility of controlling the load in two ways, i.e. by changing the throttle position (quantitatively) and/or the value of the excess air ratio by changing the fuel dose at a constant throttle position (qualitatively). The applied method of control allows to improve the efficiency of the engine especially in the range of partial loads. The experimental tests were carried out at a constant speed of 1500 rpm. During the tests, the fuel consumption of the internal combustion engine, the composition of the exhaust gas at the outlet of the exhaust system, the electrical parameters of the synchronous generator and the temperature at selected locations of the CHP system instance were measured. According to the obtained results, there was a slight increase in the efficiency of electricity generation with the application of the developed method of control of the combustion engine. The maximum power generation efficiency for Natural Gas (NG) was higher compared to LPG by more than 2 percentage points. The exhaust gas emission level confirm that the prototype cogeneration system meets the Stage II emission standard (in accordance with Directive 2002/08/EC for small SI engines with a power below 19 kW. D2 ISO 8178).
EN
Investigation of exhaust emissions and ammonia flow behavior in the exhaust system incorporating with Selective Catalytic Reduction (SCR) unit is discussed. An aftertreatment system is designed to work without additional urea injection. This study is focused on obtaining optimal parameters for catalysis. Its effectiveness is considered as a function of basic parameters of exhaust gases mixture and SCR material characteristics. A 3D geometry of SCR with porous volume has been simulated using Ansys Fluent. Moreover, a 1D model of ammonia dual-fuel CI engine has been obtained. Results were focused on obtaining local temperature, velocity, and exhaust gases composition to predict optimal probes placement, pipes insulation parameters, and characteristic dimensions.
EN
The potential for energy production from effluents and husks generated in grain processing in the rice parboiling industries in Brazil is capable of promoting energy self-sufficiency in the sector, through the production and use of syngas and biogas. However, the production of methane from residues of the rice parboiling industries is still little explored by academic studies, in general studies on the potential of methane production by this same type of effluent are found in the south of the country, however, the same is not true for the production of biodiesel from rice bran oil. The objective of this study was to determine the production potential of biodiesel, methane and electric energy of the largest parboiled rice industry in Rio Grande do Sul, located in the southern region of the country. According to this study, the rice parboiling industry located in Rio Grande do Sul, Brazil, has a production potential of 1.2-10² m³ /day of biodiesel, 2.93-10 Nm³ /day of methane and 1.89-10⁴ kWh/day of electricity. Despite being a significant and high potential, which may reduce the financial expenses of the industry regarding the purchase of energy from concessionaires, it is not able to promote its energy self-sufficiency. At the same time, it would be necessary to add the energy production potential of the rice husk gasification syngas highlighted in other studiem.
5
Content available Hybrid drivetrain systems 48 V in rally cars
EN
This article deals with the issue of using a 48 V hybrid drive system in rallying. Conclusions regarding the selection of elements of the above-mentioned system for further reasearch were presented. An analysis and calculations of the energy recoverable from regenerative braking using the BISG on a given section of the rally were carried out. Conclusions were also drawn regarding further work that will be carried out to successfully implement the above-mentioned systems for rally cars.
EN
The effectiveness of work of an internal combustion engine can be assessed by means of the energy efficiency: theoretical, internal and effective... In the problem regarding the efficiency of obtaining a work from the tested SI engine, the theoretical Seiliger-Sabathe cycle was adopted as a reference model for the real engine cycle. For comparison, the OTTO cycle was also analysed. The engine indicating allows direct determination only of internal work. However, determining the work of the theoretical cycle first requires solving the problem of selecting the parameters of the theoretical cycle, according to the real cycle of the engine (inverse problem). In order uniquely to determine the course of the theoretical Seiliger-Sabathe cycle, it is necessary to determine the parameters of the starting point and the heat distribution number. The selection of the theoretical cycle for the real cycle, within the scope of determining the number of heat distribution, is to some extent of a contractual nature. Therefore, the problem of determining the number of heat distribution was solved by two own original methods. A comparison of the real cycle with the theoretical cycle determined for it is presented.
EN
The paper presents data resulting by the preliminary experimental tests performed on a micro CHP (combined heat and power) 7 kWel unit. The engine load has been controlled by throttle position (quantitatively) or/and the value of air excess ratio (qualitatively) QQLC. By this way the engine efficiency can be improved in the range of partial loads by reducing the exergy losses during the inlet stroke. During the tests engine has been powered with LPG fuel. The engine performance together with environmental impact has been studied in this paper. Used method shows that despite the reduction of the load from 5.6 kW to 4.7 kW while burning the lean mixture, the efficiency of electricity generation increased slightly. The efficiency grew by approx. 1.41 percentage point comparing with the results obtained for almost constant load but obtained by burning the lean mixture (λ = 1.3), followed by increased throttling and combustion of the stoichiometric mixture.
EN
The propulsion system of a vehicle using an internal combustion engine generates a significant amount of waste heat during operation, which is almost entirely discharged into the environment without any useful effect. One of the ways of using waste heat is storing it, and then using, for example, when starting the engine in winter conditions. The application of the indicated solution, in particular for the combat vehicle will allow to reduce the effects of cold start and will shorten the time of preparing such a vehicle for combat operations. The article presents: types of heat accumulators that could be used in a military vehicle, the results of preliminary tests carried out on the test stand and the impact of an additional heat source on the time of heating the internal combustion engine and on emission of exhaust gas components.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.