Initial research has been carried out to determine the potential of SBE as an adsorbent material through chemical and surface area characterization. Several analyses were performed, including oil content, BET, SEM-EDS, XRD, FTIR, and adsorption capacity. The oil content of the SBE samples were 0.05–0.09%, well below the standard (3%) of hazardous material classification according to the Indonesian government regulation. The chemical composition of SBE, measured by EDS, was dominated by Si and Al elements. XRD analysis revealed two 2-theta diffraction peaks indicated the presence of crystalline SiO2 and Al2O3 phases. Additionally, the results of the FTIR test also showed the dominance of Si-O and Al-O-H functional groups. The SBE morphology, as observed in SEM image, exhibited irregular shape and porous surface covered by impurities. These results supported by the BET data which showed SBE surface area of 10.86 m2g-1 and a mesopore volume of 2.49 cm3 (STP)g-1. Batch adsorption study conducted using low and high range concentration of methylene blue produced a maximum adsorption capacity of 7.993 mg/g and 40.485 mg/g, respectively. The adsorption isotherm analysis showed that the adsorption mechanism was in accordance with the Langmuir isotherm model. Considering its chemical characteristic, SBE has met the criteria for adsorbent material. Nevertheless, the small surface area requires SBE to be activated prior to use.
Post-mining soil and solid waste from the silica sand refining industry is widespread and the potential long-term impact of toxic metals and metalloids is a significant and under-appreciated issue. This study presents the characteristics of post-mining soil and solid waste resulting from silica sand purification to observe its physical, chemical, and biological composition. Analysis of the physical properties was carried out with reference to ASTM 112-10 and the results show that post-mining soil contains 36.95% sand, 18.80% clay, and 42.74% silt, with coefficients of permeability and porosity of 0.69×10-6 cm•s-1 and 35.84%, respectively. Meanwhile, the solid waste contains 43.35% sand, 35.96% clay, and 20.68% silt with coefficients of permeability and porosity of 1.49×10-6 cm•s-1 and 51.12%. The overall mineralogy and morphology of both samples showed that they have the same chemical composition as gehlenite (Ca2Al2SiO7), spinel (MgAl2O4), akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4), aluminum oxide (Al2O3), magnetite (Fe3O4), and hematite (Fe2O3) supports this data. The chemical composition of both samples is SiO2, Al2O3, CaO, and MgO, but the post-mining soil has lower heavy metal and nutrient contents compared to solid waste. Meanwhile, solid waste has a high content of heavy metals and nutrients due to washing and bonding from the silica sand purification process. The abundance of bacteria (Colony Forming Unit) for the 10-4 and 10-5 dilutions in post-mining soil was 1.59×103and not detected, while in the solid waste, 4.10×105 and 1.64×105 were found, respectively. This study can be used as base values for modifying the two samples, which can be applied in mining land reclamation.
The use of disposable diapers is increasing every year, increasing generated diaper wastes every year. In Surabaya, diaper wastes have become an important issue when they are not treated properly. These diaper wastes will end up in water bodies and cause pollution. One of the technologies that can be used to treat diaper wastes is composting. Disposable diaper wastes consist of high lignocellulose and C content. It is necessary to mix diaper wastes and other wastes with high N content as a co-substrate, so that the optimum C/N ratio of composting can be achieved. In this research, vegetables wastes were used. The Objective of the research was to determine the effect of vegetable wastes adding as a co-substrate in composting of disposable diapers and volatile solid (VS), C-organic, and Total Nitrogen (TN) content changed during the composting process. The research was carried out with three variables mixtures of diaper wastes and vegetable wastes. Two control consist of 100% diaper wastes and 100% vegetables wastes. The Total weight of raw materials was 10 kg for each reactor. The composting process is carried out aerobically with a composting time of 60 days. The results showed that vegetable wastes have the potential to be used as a co-substrate for diaper wastes. The content of C-organic, VS and total nitrogen decreased. All of the parameters include C/N ratio meet the Indonesian Standard of compost.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.