Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Straw-fired batch boilers, due to their simple structure and low operating costs, are an interesting option for heating systems dedicated to use in houses, farms, schools, industrial facilities and other buildings. Commercially available solutions include typical water boilers and air heaters with a thermal oil jacket. The high temperature of thermal oil (180-200_C) mean straw-fired devices can be used as a source of heat for micro scale cogeneration and trigeneration systems. The first part of this paper shows an experimental analysis of a micro scale cogeneration system based on modified Rankine Cycle operation. A 100 kWth straw-fired batch boiler with thermal oil jacket was used as a high temperature heat source. Thermal oil, heated in the boiler, was transferred respectively to the evaporator, superheater and oil/water emergency heat exchanger. The steam generated was conditioned and used to power a 20 hp steam engine. Cooling water, heated in the condenser, was pumped to a 4 m3 water tank connected to two air coolers. Control of the system operation was realized using a dedicated automation system based on the PLC controller. In the second part of this study, a micro scale cogeneration system was developed and modelled in TRNSYS software on the basis of the experimental installation. The dynamic operation conditions in terms of temperatures and powers were analyzed for the main components of the system (boiler, evaporator steam engine, condenser). Moreover, some modifications in the system construction were proposed to improve its performance. The results of the experimental tests were used to identify the main aspects of the considered system—temperature, pressure and power levels in oil, steam and water circuits and operating parameters of the steam engine. Dynamic simulations performed in TRNSYS pointed to the nominal operation scenario for the tested system and showed the great potential for further improvements in the system construction.
EN
Recently, the cooling market has witnessed a significant growth resulting in a considerable increase in the demand for electricity. Demand peaks during the hottest days and has become a serious problem in terms of power network stability. This can be seen during summer in Poland, where electricity demand over those few days, is greater than compared to winter. In general, the summer peak in electrical demand due to space cooling installations is a common problem in European countries. Fortunately, the high availability of solar energy is correlated with the cooling demands of buildings. A condition that creates an opportunity for the application of solar cooling systems. Thus, solar energy may reduce the consumption of power produced from conventional energy sources and at the same time reduce the peak of electrical energy demand. The available solar thermal collectors with sufficient and insufficient temperature output to drive the solar cooling process are presented. In the case of insufficient temperature output, auxiliary units have been considered. The absorption technology has been reviewed. Some simulation and experimental results of systems presented in literature are discussed in the paper. Finally, an example simulation of a hybrid solar system of heat generation, including flat plate collectors, a solar concentrator and an absorption chiller, is presented.
PL
Ostatnio na rynku chłodniczym odnotowano znaczny wzrost zainstalowanych jednostek, determinujący znaczne zwiększenie konsumpcji energii elektrycznej. Dlatego szczytowe zapotrzebowanie w najgorętsze dni stało się poważnym problemem ze względu na stabilność sieci energetycznych. Na przykład, podczas obecnego lata w Polsce popyt na energię elektryczną w ciągu kilku dni był większy niż w dni zimowe. Ogólnie, letni szczyt zapotrzebowania na energię ze względu na instalacje do chłodzenia pomieszczeń jest powszechnym problemem w krajach europejskich. Na szczęście wysoka dostępność energii słonecznej jest skorelowana z zapotrzebowaniem na chłód budynków w lecie. Taki stan stwarza okazję do zastosowania systemów energii słonecznej do celów chłodzenia, co może obniżyć zużycie energii wytwarzanej z konwencjonalnych źródeł energii, a jednocześnie zmniejszyć szczyt zapotrzebowania na energię elektryczną. W artykule opisano dostępne kolektory słoneczne o wystarczającym i niewystarczającym wydatku temperatury do napędzania procesu chłodzenia energią słoneczną. W przypadku niewystarczającej wydajności cieplnej uwzględnia się jednostki pomocnicze (takie jak kotły elektryczne i biomasowe). Przedstawiono niektóre symulacje i wyniki eksperymentalne systemów prezentowanych w literaturze. Na zakończenie zaprezentowano wyniki symulacji hybrydowego układu słonecznego wytwarzania ciepła i chłodu z kolektorami płaskimi, koncentratorem słonecznym i chłodziarką absorpcyjną.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.