Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The use of dual-drive rolling stock is a relatively new solution in the railway market. Vehicles with such type of powertrain are more versatile because it combines the advantages of using diesel vehicles and electric vehicles that consume energy from overhead electric traction. The concept of using such vehicles is highly innovative and has many advantages. However, the design and construction process is more complicated and requires more work than in the case of conventional systems. This article presents the methodology and process of selecting an engine-generator set for a dual-drive locomotive. Indicators and procedures crucial in the process of selecting a dual-drive system for a locomotive, were described and evaluated. All the above mentioned in the work were used during the real design process of a fully Polish locomotive with both diesel and electric drives. The locomotive in Diesel mode was to have an output power of circa 1560 kW for cargo transport. Calculations for the locomotive's power balance are included, showing power losses in the system and for locomotive's own needs. It has been shown that in cargo transport 77% of the maximum engine power is used as tractive power, and in passenger transport 58.6%.
EN
The paper presents the design of a heat exchanger immersed in a water-ice reservoir and the determination of its heat capacity as a lower heat source for the heat pump. This is an innovative solution, the first project on this scale in Poland. Heat absorption from the water-ice tank took place in three stages: from water at a temperature range of 20oC to 0 oC, from the water-ice phase change at 0oC, and from ice at a temperature range of 0oC to 10oC. The CFD (Computational Fluid Dynamics) analysis of a heat exchanger performance was performed. It required simulation of water natural convection, water-ice phase change, and heat transfer from the ground. The heat flux absorbed in the designed exchanger was calculated based on the current glycol temperature and the implemented COP (Coefficient of Performance) characteristic of the heat pump. This was done via the user-defined function (UDF) available in Ansys FLUENT. The compiled internal software subroutine was defined based on the DEFINE_ADJUST macro. Moreover, the thermal resistance of ice forming on the pipes was included. The numerical analysis indicated that 66097 kWh of heat would be absorbed from the reservoir in 500 hours of exploitation. The volume fraction of water at the end of the simulation was equal to 26.7% and the volume fraction of ice was equal to 73.3%. The CFD simulation confirmed the heat capacity value of the water-ice storage tank which fulfilled the design requirements.
EN
The paper presents a new concept of the turbine engine in the area of pressure gain combustion (PGE). The engine works according to Humphrey’s cycle. Minor modification in construction has allowed power generation of 500 kW, 700 kW, 1000 kW, and 1800 kW. The concept successfully resolved the challenges related to the temporary opening and closing of the combustion chamber. The presented valve timing system has ensured effective gas flow and what stands behind it, an effective process of conversion of a high-pressure gas impulse into mechanical energy. Rotating combustion chambers enabled the application of an effective sealing system. The concept characterizes simple construction and potentially low power-to-weight coefficient. The CFD numerical analysis of the presented engine concept showed very promising effective efficiency and low specific fuel consumption.
4
Content available Crashworthiness of a type 228M rail vehicle
EN
This article presents crashworthiness issues based on the design of the 228M type light rail vehicle. Meeting the requirements of the standard requires the use of appropriate components dedicated to energy absorption and ensuring adequate strength of the body. After analyzing the scenarios, it can be concluded whether type light rail vehicle. 228M meets the normative requirements for crashworthiness.
EN
The paper presents a concept of a new turbine engine with the use of rotating isochoric combustion chambers. In contrast to previously analyzed authors’ engine concepts, here rotating combustion chambers were used as a valve timing system. As a result, several practical challenges could be overcome. An effective ceramic sealing system could be applied to the rotating combustion chambers. It can assure full tightness regardless of thermal conditions and related deformations. The segment sealing elements working with ceramic counter-surface can work as self-alignment because of the centrifugal force acting on them. The isochoric combustion process, gas expansion, and moment generation were analyzed using the CFD tool (computational fluid dynamics). The investigated engine concept is characterized by big energy efficiency and simple construction. Finally, further improvements in engine performance are discussed.
PL
Przedmiotem artykułu jest lekki dwuczłonowy autobus szynowy typu 227M o nazwie handlowej „PLUS”. Projekt dwunapędowego pasażerskiego pojazdu szynowego przeznaczonego głównie do poruszania się po trasach regionalnych został zrealizowany przez Sieć Badawczą Łukasiewicz – Instytut Pojazdów Szynowych „TABOR” w Poznaniu, w kooperacji z producentem pojazdu H. Cegielski - Fabryka Pojazdów Szynowych. Pojazd posiadający możliwość poruszania się zarówno po trakcji zelektryfikowanej oraz niezelektryfikowanej został oficjalnie zaprezentowany we wrześniu 2021 roku. W artykule zostały przedstawione innowacyjne rozwiązania techniczne i konstrukcyjne autobusu szynowego obejmujące spalinowy oraz elektryczny układ napędowy, układy jezdne, parametry trakcyjne, a także rozmieszczenie urządzeń i przedmiotów we wnętrzu i na zewnątrz pojazdu.
EN
The subject of the article is a light two-section railcar of the 227M type with the trade name “PLUS”. The project of a two-drive passenger rail vehicle intended mainly for driving on regional routes was carried out by the Łukasiewicz Research Network - Rail Vehicles Institute «TABOR» in Poznań, in cooperation with the vehicle manufacturer H. Cegielski - Fabryka Pojazdów Szynowych. The vehicle capable of moving on both electrified and non-electrified traction was officially presented in September 2021. The article presents innovative technical solutions and structural design of a railcar, including internal combustion and electric drive systems, driving systems, traction parameters, as well as the arrangement of devices and objects inside and outside the vehicle.
PL
Kontrola zużycia energii potrzebnej do poruszania się pojazdu po określonej trasie jest ważnym aspektem w eksploatacji środków transportu. Celem niniejszej pracy jest analiza zużycia energii dwuczłonowego pojazdu elektrycznego z zasobnikiem energii podczas symulowanego przejazdu teoretycznego na uprzednio wybranej trasie testowej. Projekt pojazdu został zrealizowany przez Sieć Badawczą Łukasiewicz – Instytut Pojazdów Szynowych „TABOR” oraz H. Cegielski – Fabryka Pojazdów Szynowych. Wyposażenie zespołu trakcyjnego w zasobnik energii pozwala na łączenie tras zelektryfikowanych oraz niezelektryfikowanych. W pracy ujęto algorytm obliczeń, rozpływ energii w pojedzie, parametry przejazdu oraz opis trasy testowej. Uzyskane wyniki pozwoliły na wyznaczenie m.in. minimalnej niezbędnej pojemności zasobnika energii do pokonania analizowanej trasy.
EN
The control of energy consumption needed to move a vehicle along a specific route is an important aspect in the operation of means of transport. The aim of this study is to analyse the energy consumption of a two-unit electric rail vehicle with an energy storage during a simulated theoretical ride on a previously selected test route. The vehicle design was carried out by the Łukasiewicz Research Network - Institute of Rail Vehicles «TABOR» and H. Cegielski - Factory of Rail Vehicles. Using an energy storage allows the connection of electrified and nonelectrified routes. The work includes the calculation algorithm, energy flow in the vehicle, ride parameters and a description of the test route. The obtained results allowed for the determination of, inter alia, the minimum necessary capacity of the energy storage to cover the analysed route.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.