Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
During the last decade, the Grand Agadir has faced a huge production of solid waste, similarly to all other Moroccan cities. Indeed, these solid wastes are composed of the organic matter fraction in 77%. This solid waste is buried in the landfill of Tamelast, which, with its undersized leachate storage ponds, is the source of many environmental problems. Thus, the development of a landfill site meeting environmental standards has become an urgent need. This study aims to highlight the current state of waste management in Grand Agadir, while assessing the polluting load of leachate produced at the Tamelast landfill. This was achieved by taking samples of young leachate at the outlet of the purge, followed by medium and old leachate from the storage tanks (Pond N°2 & N°3). In addition to the olfactory nuisances still persistent at the landfill area, the results of the physicochemical characterization showed that the leachates produced, if not treated effectively, would generate great environmental and health risks to the surrounding environments, by their high organic and mineral load. The electrical conductivity reflecting the mineral load, reaches a maximum value of 130 mS/cm and a minimum value of 16 mS/cm. The maximum measured values of BOD5 and COD were, 43251 mgO2/L and 90240 mgO2/L, respectively, indicating high biodegradable and non-biodegradable organic pollutant load. Total dry solids ranges between 231 mg/l and 9696 mg/l, which exceeds the allowable discharge limits for liquid pollutant. The analysis of heavy metals has shown strong values in terms of Iron, Silver, Nickel, and Manganese, which, similarly, exceed the limits of the standards for liquid pollutants released into natural fields.
EN
The discovery of natural resources remains the main mission of Earth observation satellites, especially in geographical areas that have a very difficult accessibility as those of the Bou Azzer-El Graara inlier (Central Anti-Atlas, Morocco). This work investigates the use of different satellite data, such as Sentinel-2A's multispectral imagery, in order to direct the prospection program in an efficient manner, saving both time and cost. The image processing methods of Landsat 7, 8, and “Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)” (30 m/15 m) were used to create methods for Sentinel-2A images (10 m). The red, green, blue (RGB) image 12.8.2, 11/12.11/2.11/8, principal component (PC) 1,2,3(11.12.2), and other new images were the result of principal component analysis (PCA), and classification by the Iterative Self-Organizing Data Analysis Technique (ISODATA) and K-Means allowed realization of a lithological cartography as well as maps of lineaments through directional filters and the ratio of 11/12 for hydrothermal alteration zone mapping. The assembly of lithological, structural, and hydrothermal alteration data gave an idea of the mineralogy of the study area. Validity of the results was tested by comparison with the field data and the geological maps of the studied site (62% for the hydrothermal alteration zone, 81% for the lithological map, and 74% for the structural map).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.