Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Support vector machine and artificial neural network are widely used in classification applications. Extreme learning machine (ELM) is a novel and efficient learning algorithm based on the generalized single hidden layer feed forward networks, which performs well in classification applications. The research results have shown the superiority of ELM with the existing classical algorithms: support vector machine (SVM) and back propagation neural network. In this study, we firstly propose a novel nonnegative matrix factorization extreme learning machine (NMFELM) to improve the performance of standard ELM method. Then we propose a novel near-infrared palmprint recognition approach based on NMFELM classifier. As the test data, we use the near-infrared palmprint database provided by Hong Kong Polytechnic University. The experimental results demonstrate that the proposed NMFELM method outperforms the standard ELM- and SVM-based methods.
EN
In order to handle inconsistencies in ordinal and monotonic information systems, several relaxed versions of the Dominance-based Rough Set Approach (DRSA) have been proposed, e.g., VC-DRSA. These versions use special consistency measures to admit some inconsistent objects in the lower approximations. The minimal consistency level that has to be attained by objects included in the lower approximations is defined using a prior knowledge or a trial-and-error procedure. In order to avoid dependence on prior knowledge, an alternative way of handling inconsistencies is to iteratively eliminate the most inconsistent objects (according to some measure) until the information system becomes consistent. This idea is a base of a new method of handling inconsistencies presented in this paper and called TIPStoC. The TIPStoC algorithm is illustrated by an example from the area of telecommunication and the efficiency of the new method is proved by a computational experiment.
3
Content available remote Feature fusion of palmprint and face via tensor analysis and curvelet transform
EN
In order to improve the recognition accuracy of the unimodal biometric system and to address the problem of the small samples recognition, a multimodal biometric recognition approach based on feature fusion level and curve tensor is proposed in this paper. The curve tensor approach is an extension of the tensor analysis method based on curvelet coefficients space. We use two kinds of biometrics: palmprint recognition and face recognition. All image features are extracted by using the curve tensor algorithm and then the normalized features are combined at the feature fusion level by using several fusion strategies. The k-nearest neighbour (KNN) classifier is used to determine the final biometric classification. The experimental results demonstrate that the proposed approach outperforms the unimodal solution and the proposed nearly Gaussian fusion (NGF) strategy has a better performance than other fusion rules.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.