Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Electroencephalography (EEG) is a method of the brain–computer interface (BCI) that measures brain activities. EEG is a method of (non-)invasive recording ofthe electrical activity ofthe brain. This can be used to build BCIs. From the last decade, EEG has grasped researchers' attention to distinguish human activities. However, temporal information has rarely been retained to incorporate temporal information for multi-class (more than two classes) motor imagery classification. This research proposes a long-short-term-memory-based deep learning model to learn the hidden sequential patterns. Two types of features are used to feed the proposed model, including Fourier Transform Energy Maps (FTEMs) and Common Spatial Patterns (CSPs) filters. Multiple experiments have been conducted on a publicly available dataset. Extraction of spatial and spectro-temporal features using CSP filters and FTEM allow the sequence-tosequence based proposed model to learn the hidden sequential features. The proposed method is trained, evaluated, and optimized for a publicly available benchmark data set and resulted in 0.81 mean kappa value. Obtained results depict the model robustness for the artifacts and suitable for real-life applications with comparable classification accuracy. The code and findings will be available at https://github.com/waseemabbaas/Motor-Imagery-Classification.git.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.