The elements that possess the ability of changing the flow structure (neckings, nozzles, valves, elbows) can be found in numerous industrial and medical applications. This ability leads to the velocity and temperature fields modification and can be a reason of negative effects like pressure loss. These negative effects can be reduced by the usage of magnetic field. Magnetic control of weakly magnetic fluids’ velocity and temperature distributions is well known. Presented paper considers the numerical analysis of velocity and temperature maldistribution due to the influence of strong magnetic field. The analysis was carried out for three-dimensional circular duct with simplified stenosis (narrowing of the blood vessels), which took form of confusor-diffuser section of the pipe. The system included duct and the magnetic coil that was oriented perpendicularly to the flow axis and placed in between confusor and diffuser. The wall of the stenosis was divided into subzones partially heated in order to control the velocity and temperature fields. Biot-Savart’s law was applied to calculate the distribution of the magnetic field, which was then used to obtain the magnetic force distribution and added to principle of conservation of momentum equations as the external body force. Commercially available software Ansys Fluent 13 was chosen to conduct the numerical analysis, however special user-defined modulus to calculate the distribution of magnetic force was prepared and implemented in it. The results pointed out that the usage of magnetic field might provide a significant change in both velocity and temperature distribution, especially for low Reynolds number flows.
PL
Elementy posiadające zdolność zmiany struktury przepływu (przewężenia, dysze, zawory, kolanka) mają wiele zastosowań w przemyśle i medycynie. Zdolność ta prowadzi do modyfikacji pól temperatury oraz prędkości i może być przyczyną negatywnych efektów, takich jak straty ciśnienia. Te negatywne efekty można wyeliminować przy użyciu pola magnetycznego. Magnetyczna kontrola rozkładów prędkości i temperatury słabo namagnesowanych cieczy jest dobrze znana. Niniejszy artykuł prezentuje analizę numeryczną zaburzeń pól prędkości i temperatury pod wpływem silnego pola magnetycznego. Analizę przeprowadzono dla trójwymiarowych kanałów o przekroju okrągłym z uproszczoną stenozą (zwężeniem naczyń krwionośnych) w formie połączenia typu konfuzor-dyfuzor. Badany układ składał się z kanału oraz cewki magnetycznej zorientowanej prostopadle do osi przepływu i umieszczonej między konfuzorem a dyfuzorem. Ścianka stenozy została podzielona na mniejsze obszary grzane różnicowo, aby odpowiednio zmieniać pole temperatury i prędkości. Zastosowano prawo Biota-Savarta w celu obliczenia rozkładu indukcji pola magnetycznego, który później został wykorzystany do otrzymania rozkładu siły magnetycznej. Siła ta została umieszczona w równaniach zachowania pędu. Analizę przeprowadzono przy użyciu komercyjnego oprogramowania (Ansys Fluent 13), w którym zaimplementowano specjalną funkcję definiowaną przez użytkownika w celu obliczenia rozkładu indukcji oraz siły magnetycznej. Wyniki wykazały, że pole magnetyczne może mieć znaczący wpływ na rozkłady prędkości i temperatury, szczególnie w przypadku przepływów o niskiej liczbie Reynoldsa.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.