Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The surface roughness and residual stress behavior in two types of SiNx/SiO2 dielectric quarter-wave stacks was investigated experimentally. A reactive pulsed magnetron sputtering system was used to prepare the SiNx/SiO2 multilayer thin films. The results show that SiNx/SiO2 quarter-wave stack with a buffer layer of MgF2 thin film can reduce the residual stress. The effect of aging on the residual stress in two quarter-wave stacks was also studied. We found that the residual stresses in both SiNx/SiO2 multilayer coatings are changed from a compressive state to a tensile stress state with increasing the aging time. The root mean square (RMS) surface roughness of MgF2/(SiNx/SiO2)22 and (SiNx/SiO2)22 quarter-wave stacks are 2.23 ± 0.22 nm and 2.08 ± 0.20 nm, respectively.
EN
This work presents a high-sensitivity refractive index and salinity sensor by using fiber-optic side-polishing and electron-beam evaporation techniques. Thin film coated on the flat surface of side-polished fibers can generate a lossy mode resonance (LMR) effect. A gallium-doped zinc oxide (GZO) thin film was prepared by an electron-beam evaporation with the ion assisted deposition method. The residual thickness of the side-polished fiber was 76.5 μm, and GZO film thickness of 69 nm was deposited on the flat surface of the side-polished fiber to fabricate LMR-based fiber sensors. The variation in the optical spectrum of LMR-based fiber sensors was measured by different refractive index saline solutions. The LMR wavelength shift is caused by the refractive index change, which is nearly proportional to the salinity. The corresponding sensitivity of the proposed fiber-optic sensor was 3059 nm/RIU (refractive index unit) for the refractive index range of 1.333 to 1.398. To evaluate the sensitivity of LMR salinity sensors, the saline solution salinities of 3.6%, 7.3%, 10.9%, 14.6%, 18.2% and 21.9% were measured in this work. The experimental result shows that the sensitivity of the proposed salinity sensor is 9.94 nm/%.
EN
This paper investigates the influence of film thickness on the electrical and mechanical properties of transparent indium tin oxide (ITO) thin films. Two groups of ITO thin films deposited on unheated substrates were prepared by the radio-frequency magnetron sputtering technique. The biaxial residual stress and surface roughness for two groups of ITO thin films were measured by a Twyman–Green interferometer and a Linnik microscopic interferometer, respectively. The electrical resistivity of the ITO films was measured by a four-point probe apparatus, the thickness was determined mechanically with a profilometer. The measurement results show that the average resistivity of ITO thin films decreases with increasing the deposited thickness. The compressive residual stress in the ITO thin films decreases with increasing the deposited thickness. We also find that an anisotropic stress in the two groups of ITO films is more compressive in a certain direction. The RMS surface roughness in the two groups of ITO films is less than 1 nm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.