Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Tetraamminecopper(II) nitrate(V) (TACN) is a complex copper salt which is easily formed when ammonium nitrate (AN) comes into contact with copper. It is considered to be an unwanted contaminant of AN because of its sensitivity to mechanical stimuli and significant explosive properties. The formation of TACN by the reaction of copper with molten ammonium nitrate(V) was demonstrated by powder diffraction. Friction and impact sensitivity testing was performed and field experiments were then conducted to reveal the detonation parameters of TACN and its initiation capability towards ammonium nitrate. The dependence of the detonation velocity on charge diameter was revealed and the ideal detonation velocity of 3500 m·s−1 at 0.87 g·cm−3 was measured. AN with the addition of 16 wt.% of TACN was found to detonate when initiated with a small booster charge. Moreover, TACN was able to initiate detonation in fertilizer grade ammonium nitrate(V) under massive steel confinement. TACN should be therefore considered as a possible contributory initiation source in some large scale accidents. In this article, some properties of TACN are revealed which could be useful for the investigation of accidents.
EN
Erythritol tetranitrate (ETN) is a low melting, solid, nitrate ester with significant explosive properties. The increased availability of its precursor (erythritol), which is now used as a sweetener, has attracted attention to the possible misuse of ETN as an improvised explosive. However, ETN also has some potential to be used as a component of military explosives or propellants. This article focuses on the properties of melt-cast ETN. The sensitivity of the compound towards impact and friction was tested. The explosive performance was evaluated, based on cylinder expansion tests and detonation velocity measurements. The impact energy and friction force required for 50% probability of initiation was 3.79 J and 47.7 N, respectively. A Gurney velocity value of G = 2771 m·s−1 and a detonation velocity of 8027 m·s−1 at a charge density of 1.700 g·cm−3, were found for the melt-cast material. The sensitivity characteristics of melt-cast ETN does not differ significantly from either literature values or the authors’ data measured using the crystalline material. The explosive performance properties were found to be close to those of PETN.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.